Background: As more and more older adults prefer to stay in their homes as they age, there’s a need for technology to support this. A relevant technology is Artificial Intelligence (AI)-driven lifestyle monitoring, utilizing data from sensors placed in the home. This technology is not intended to replace nurses but to serve as a support tool. Understanding the specific competencies that nurses require to effectively use it is crucial. The aim of this study is to identify the essential competencies nurses require to work with AI-driven lifestyle monitoring in longterm care. Methods: A three round modified Delphi study was conducted, consisting of two online questionnaires and one focus group. A group of 48 experts participated in the study: nurses, innovators, developers, researchers, managers and educators. In the first two rounds experts assessed clarity and relevance on a proposed list of competencies, with the opportunity to provide suggestions for adjustments or inclusion of new competencies. In the third round the items without consensus were bespoken in a focus group. Findings: After the first round consensus was reached on relevance and clarity on n = 46 (72 %) of the competencies, after the second round on n = 54 (83 %) of the competencies. After the third round a final list of 10 competency domains and 61 sub-competencies was finalized. The 10 competency domains are: Fundamentals of AI, Participation in AI design, Patient-centered needs assessment, Personalisation of AI to patients’ situation, Data reporting, Interpretation of AI output, Integration of AI output into clinical practice, Communication about AI use, Implementation of AI and Evaluation of AI use. These competencies span from basic understanding of AIdriven lifestyle monitoring, to being able to integrate it in daily work, being able to evaluate it and communicate its use to other stakeholders, including patients and informal caregivers. Conclusion: Our study introduces a novel framework highlighting the (sub)competencies, required for nurses to work with AI-driven lifestyle monitoring in long-term care. These findings provide a foundation for developing initial educational programs and lifelong learning activities for nurses in this evolving field. Moreover, the importance that experts attach to AI competencies calls for a broader discussion about a potential shift in nursing responsibilities and tasks as healthcare becomes increasingly technologically advanced and data-driven, possibly leading to new roles within nursing.
LINK
Abstract: Combined lifestyle interventions (CLI) are focused on guiding clients with weight-related health risks into a healthy lifestyle. CLIs are most often delivered through face-to-face sessions with limited use of eHealth technologies. To integrate eHealth into existing CLIs, it is important to identify how behavior change techniques are being used by health professionals in the online and offline treatment of overweight clients. Therefore, we conducted online semi-structured interviews with providers of online and offline lifestyle interventions. Data were analyzed using an inductive thematic approach. Thirty-eight professionals with (n = 23) and without (n = 15) eHealth experience were interviewed. Professionals indicate that goal setting and action planning, providing feedback and monitoring, facilitating social support, and shaping knowledge are of high value to improve physical activity and eating behaviors. These findings suggest that it may be beneficial to use monitoring devices combined with video consultations to provide just-in-time feedback based on the client’s actual performance. In addition, it can be useful to incorporate specific social support functions allowing CLI clients to interact with each other. Lastly, our results indicate that online modules can be used to enhance knowledge about health consequences of unhealthy behavior in clients with weight-related health risks.
DOCUMENT
Abstract Technology has a major impact on the way nurses work. Data-driven technologies, such as artificial intelligence (AI), have particularly strong potential to support nurses in their work. However, their use also introduces ambiguities. An example of such a technology is AI-driven lifestyle monitoring in long-term care for older adults, based on data collected from ambient sensors in an older adult’s home. Designing and implementing this technology in such an intimate setting requires collaboration with nurses experienced in long-term and older adult care. This viewpoint paper emphasizes the need to incorporate nurses and the nursing perspective into every stage of designing, using, and implementing AI-driven lifestyle monitoring in long-term care settings. It is argued that the technology will not replace nurses, but rather act as a new digital colleague, complementing the humane qualities of nurses and seamlessly integrating into nursing workflows. Several advantages of such a collaboration between nurses and technology are highlighted, as are potential risks such as decreased patient empowerment, depersonalization, lack of transparency, and loss of human contact. Finally, practical suggestions are offered to move forward with integrating the digital colleague
DOCUMENT
The livability of the cities and attractiveness of our environment can be improved by smarter choices for mobility products and travel modes. A change from current car-dependent lifestyles towards the use of healthier and less polluted transport modes, such as cycling, is needed. With awareness campaigns, cycling facilities and cycle infrastructure, the use of the bicycle will be stimulated. But which campaigns are effective? Can we stimulate cycling by adding cycling facilities along the cycle path? How can we design the best cycle infrastructure for a region? And what impact does good cycle infrastructure have on the increase of cycling?To find answers for these questions and come up with a future approach to stimulate bicycle use, BUas is participating in the InterReg V NWE-project CHIPS; Cycle Highways Innovation for smarter People transport and Spatial planning. Together with the city of Tilburg and other partners from The Netherlands, Belgium, Germany and United Kingdom we explore and demonstrate infrastructural improvements and tackle crucial elements related to engaging users and successful promotion of cycle highways. BUas is responsible for the monitoring and evaluation of the project. To measure the impact and effectiveness of cycle highway innovations we use Cyclespex and Cycleprint.With Cyclespex a virtual living lab is created which we will use to test several readability and wayfinding measures for cycle infrastructure. Cyclespex gives us the opportunity to test different scenario’s in virtual reality that will help us to make decisions about the final solution that will be realized on the cycle highway. Cycleprint will be used to develop a monitoring dashboard where municipalities of cities can easily monitor and evaluate the local bicycle use.
Receiving the first “Rijbewijs” is always an exciting moment for any teenager, but, this also comes with considerable risks. In the Netherlands, the fatality rate of young novice drivers is five times higher than that of drivers between the ages of 30 and 59 years. These risks are mainly because of age-related factors and lack of experience which manifests in inadequate higher-order skills required for hazard perception and successful interventions to react to risks on the road. Although risk assessment and driving attitude is included in the drivers’ training and examination process, the accident statistics show that it only has limited influence on the development factors such as attitudes, motivations, lifestyles, self-assessment and risk acceptance that play a significant role in post-licensing driving. This negatively impacts traffic safety. “How could novice drivers receive critical feedback on their driving behaviour and traffic safety? ” is, therefore, an important question. Due to major advancements in domains such as ICT, sensors, big data, and Artificial Intelligence (AI), in-vehicle data is being extensively used for monitoring driver behaviour, driving style identification and driver modelling. However, use of such techniques in pre-license driver training and assessment has not been extensively explored. EIDETIC aims at developing a novel approach by fusing multiple data sources such as in-vehicle sensors/data (to trace the vehicle trajectory), eye-tracking glasses (to monitor viewing behaviour) and cameras (to monitor the surroundings) for providing quantifiable and understandable feedback to novice drivers. Furthermore, this new knowledge could also support driving instructors and examiners in ensuring safe drivers. This project will also generate necessary knowledge that would serve as a foundation for facilitating the transition to the training and assessment for drivers of automated vehicles.
With the help of sensors that made data collection and processing possible, many products around us have become “smarter”. The situation that our car, refrigerator, or umbrella communicating with us and each other is no longer a future scenario; it is increasingly a shared reality. There are good examples of such connectedness such as lifestyle monitoring of elderly persons or waste management in a smart city. Yet, many other smart products are designed just for the sake of embedding a chip in something without thinking through what kind of value they add everyday life. In other words, the design of these systems have mainly been driven by technology until now and little studies have been carried out on how the design of such systems helps citizens to improve or maintain the quality of their individual and collective lives. The CREATE-IT research center creates new solutions and methodologies in “digital design” that contribute to the quality of life of citizens. Correspondingly, this proposal focuses on one type of digital design—smart products—and investigate the concept of empowerment in relation to the design of smart products. In particular, the proposal aims to develop a model with its supplementary tools and methods for designing such products better. By following a research-through-design methodology, the proposal intends to offer a critical understanding on designing smart products. Along with its theoretical contribution, the proposal will also aid the students of ICT and design, and professionals such as designers and engineers to create smart products that will empower people and the industry to develop products grounded in a clear user experience and business model.