Light enables us to see and perceive our environment but it also initiates effects beyond vision, such as alertness. Literature describes that at least six factors are relevant for initiating effects beyond vision. The exact relationship between these factors and alertness is not yet fully understood. In the current field study, personal lighting conditions of 62 Dutch office workers (aged 49.7 ± 11.4 years) were continuously measured and simultaneously self-reported activities and locations during the day were gathered via diaries. Each office worker participated 10 working days in spring 2017. Personal lighting conditions were interpreted based on four of the six factors (light quantity, spectrum, timing, and duration of light exposure). Large individual differences were found for the daily luminous exposures, illuminances, correlated colour temperatures, and irradiances measured with the blue sensor area of the dosimeter. The average illuminance (over all participants and all days) over the course of the day peaked three times. The analysis of the duration of light exposure demonstrated that the participants were on average only exposed to an illuminance above 1000 lx for 72 minutes per day. The interpretation of personal lighting conditions based on the four factors provides essential information since all of these factors may be relevant for initiating effects beyond vision. The findings in the current paper give first in-depth insight in the possibilities to interpret personal lighting conditions of office workers.
MULTIFILE
Journal of Physics: Conference Series Paper • The following article is Open access Exploring the relationship between light and subjective alertness using personal lighting conditions J. van Duijnhoven1, M.P.J. Aarts1, E.R. van den Heuvel2 and H.S.M. Kort3,4 Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, Volume 2042, CISBAT 2021 Carbon-neutral cities - energy efficiency and renewables in the digital era 8-10 September 2021, EPFL Lausanne, Switzerland Citation J. van Duijnhoven et al 2021 J. Phys.: Conf. Ser. 2042 012119 Download Article PDF References Download PDF 29 Total downloads Turn on MathJax Share this article Share this content via email Share on Facebook (opens new window) Share on Twitter (opens new window) Share on Mendeley (opens new window) Hide article information Author e-mails j.v.duijnhoven1@tue.nl Author affiliations 1 Building Lighting Group, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands 2 Stochastics, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands 3 Research Centre Healthy and Sustainable Living, University of Applied Sciences Utrecht, Utrecht, The Netherlands 4 Building Healthy Environments for Future Users Group, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands DOI https://doi.org/10.1088/1742-6596/2042/1/012119 Buy this article in print Journal RSS Sign up for new issue notifications Create citation alert Abstract The discovery of the ipRGCs was thought to fully explain the mechanism behind the relationship between light and effects beyond vision such as alertness. However, this relationship turned out to be more complicated. The current paper describes, by using personal lighting conditions in a field study, further exploration of the relationship between light and subjective alertness during daytime. Findings show that this relationship is highly dependent on the individual. Although nearly all dose-response curves between personal lighting conditions and subjective alertness determined in this study turned out to be not significant, the results may be of high importance in the exploration of the exact relationship.
MULTIFILE
TU Delft, in collaboration with Gravity Energy BV, has conducted a feasibility study on harvesting electric energy from wind and vibrations using a wobbling triboelectric nanogenerator (WTENG). Unlike conventional wind turbines, the WTENG converts wind/vibration energy into contact-separation events through a wobbling structure and unbalanced mass. Initial experimental findings demonstrated a peak power density of 1.6 W/m² under optimal conditions. Additionally, the harvester successfully charged a 3.7V lithium-ion battery with over 4.5 μA, illustrated in a self-powered light mast as a practical demonstration in collaboration with TimberLAB. This project aims to advance this research by developing a functioning prototype for public spaces, particularly lanterns, in partnership with TimberLAB and Gravity Energy. The study will explore the potential of triboelectric nanogenerators (TENG) and piezoelectric materials to optimize energy harvesting efficiency and power output. Specifically, the project will focus on improving the WTENG's output power for practical applications by optimizing parameters such as electrode dimensions and contact-separation quality. It will also explore cost-effective, commercially available materials and best fabrication/assembly strategies to simplify scalability for different length scales and power outputs. The research will proceed with the following steps: Design and Prototype Development: Create a prototype WTENG to evaluate energy harvesting efficiency and the quantity of energy harvested. A hybrid of TENG and piezoelectric materials will be designed and assessed. Optimization: Refine the system's design by considering the scaling effect and combinations of TENG-piezoelectric materials, focusing on maximizing energy efficiency (power output). This includes exploring size effects and optimal dimensions. Real-World Application Demonstration: Assess the optimized system's potential to power lanterns in close collaboration with TimberLAB, DVC Groep BV and Gravity Energy. Identify key parameters affecting the efficiency of WTENG technology and propose a roadmap for its exploitation in other applications such as public space lighting and charging.
Horticulture crops and plants use only a limited part of the solar spectrum for their growth, the photosynthetically active radiation (PAR); even within PAR, different spectral regions have different functionality for plant growth, and so different light spectra are used to influence different properties of the plant, such as leaves, fruiting, longer stems and other plant properties. Artificial lighting, typically with LEDs, has been used to provide these specified spectra per plant, defined by their light recipe. This light is called steering light. While the natural sunlight provides a much more sustainable and abundant form of energy, however, the solar spectrum is not tuned towards specific plant needs. In this project, we capitalize on recent breakthroughs in nanoscience to optimally shape the solar spectrum, and produce a spectrally selective steering light, i.e. convert the energy of the entire solar spectrum into a spectrum most useful for agriculture and plant growth to utilize the sustainable solar energy to its fullest, and save on artificial lighting and electricity. We will take advantage of the developed light recipes and create a sustainable alternative to LED steering light, using nanomaterials to optimally shape the natural sunlight spectrum, while maintaining the increased yields. As a proof of concept, we are targeting the compactness of ornamental plants and seek to steer the plants’ growth to reduce leaf extension and thus be more valuable. To realize this project the Peter Schall group at the UvA leads this effort together with the university spinout, SolarFoil, whose expertise lies in the development of spectral conversion layers for horticulture. Renolit - a plastic manufacturer and Chemtrix, expert in flow synthesis, provide expertise and technical support to scale the foil, while Ludvig-Svensson, a pioneer in greenhouse climate screens, provides the desired light specifications and tests the foil in a controlled setting.
In 2024, the Dutch government set a new plan for offshore wind farms to become the Netherlands' largest power source by 2032, aiming for 21 GW of installed capacity. By 2050, they expect between 38 and 72 GW of offshore wind power to meet climate-neutral energy goals. Achieving this depends heavily on efficient wind turbines (WTs) operation, but WTs face issues like cavitation, bird strikes, and corrosion, all of which reduce energy output. Regular Inspection and Maintenance (I&M) of WTs is crucial but remains underdeveloped in current wind farms. Presently, I&M tasks are done by on-site workers using rope access, which is time-consuming, costly, and dangerous. Moreover, weather conditions and personnel availability further hinder the efficiency of these operations. The number of operational WTs is expected to rise in the coming years, while the availability of service personnel will keep on declining, highlighting the need for safer and more cost-effective solutions. One promising innovation is the use of aerial robots, or drones, for I&M tasks. Recent developments show that they can perform tasks requiring physical interaction with the environment, such as WT inspections and maintenance. However, the current design of drones is often task-specific, making it financially unfeasible for small and medium-sized enterprises (SMEs) – providing services in WT inspection and maintenance- to adopt. Together with knowledge institutes, SMEs and innovation clusters, this project addresses these urgent challenges by exploring the question of how to develop a modular aerial robot that can be easily and intuitively deployed in offshore environments for inspecting and maintaining WTs to facilitate SMEs adoption of this technology? The goal is to create a modular drone that can be equipped with various tools for different tasks, reducing financial burdens for SMEs, improving worker safety, and facilitating efficient green energy production to support the renewable energy transition.