A number of studies have investigated the possibility of extending Electric Vehicle (EV) Lithium-ion battery life by deliberately choosing to store the battery at a low to moderate state of charge. Recently, there has been considerable interest shown in the scheme of a deliberate discharge and subsequent recharge of a battery to yield an overall reduction in battery degradation whilst carrying out Vehicle-to-Grid (V2G) services (so-called `beneficial V2G'). This paper presents an investigation of the conditions permitting successful operation of this method by examining incremental time variation of the relevant parameters for two types of cells from results of the same physical size and chemistry, and similar capacity. These two types of cells are found in this present analysis to offer differing degrees of suitability for beneficial V2G.
DOCUMENT
The intermittency of renewable energy technologies requires adequate storage technologies. Hydrogen systems consisting of electrolysers, storage tanks, and fuel cells can be implemented as well as batteries. The requirements of the hydrogen purification unit is missing from literature. We measured the same for a 4.5 kW PEM electrolyser to be 0.8 kW for 10 min.A simulation to hybridize the hydrogen system, including its purification unit, with lithium-ion batteries for energy storage is presented; the batteries also support the electrolyser. We simulated a scenario for operating a Dutch household off-electric-grid using solar and wind electricity to find the capacities and costs of the components of the system.Although the energy use of the purification unit is small, it influences the operation of the system, affecting the sizing of the components. The battery as a fast response efficient secondary storage system increases the ability of the electrolyser to start up.
DOCUMENT
The 6th International Human Rights Education Conference is about teaching human rights. The purpose of this convention is to protect and promote the right of people with disabilities to participate equally in societal life. Implementation of the convention is a responsibility of the national government. At the Utrecht University of Applied Sciences a social work course now includes an introductory lecture on human rights using objects and a game that addresses the UN Convention on the Rights of Persons with Disabilities.
LINK
The Vulkan real estate site in Oslo is owned by Aspelin Ramm, and includes one of the largest parking garages used for EV charging in Europe. EV charging (both AC and DC) is managed for now predominately for costs reasons but also with relevance at further EV penetration level in this car parking location (mixed EV and ICE vehicles). This neighbourhood scale SEEV4-City operational pilot (OP) has 50 22 kW flexible AC chargers with two sockets each and two DC chargers of 50 kW with both ChaDeMo and CCS outlets. All EV chargers now have a smart control (SC) and Vehicle-to-Grid (V2G) functionality (though the latter may not be in place fully for DC chargers, as they may not be fully connected to the remote back-office system of the EV charging systems operator). A Lithium-ion Battery Energy Stationary Storage System (BESS) with a capacity of 50 kWh is pre-programmed to reduce the energy power peaks of the electric vehicle (EV) charging infrastructure and charges at other times from the central grid (which has a generation mix of 98% from hydro-electric power, and in the region covering Oslo also 1% from wind). The inverter used in the BESS is rated at 50 kW, and is also controlled to perform phase balancing of the 3-phase supply system.
DOCUMENT
The need for increasing further the penetration of Renewable Energy Sources (RESs) is demanding a change in the way distribution grids are managed. In particular, the RESs intermittent and stochastic nature is finding in Battery Energy Storage (BES) systems its most immediate countermeasure. This work presents a reality-based assessment and comparison of the impact of three different BES technologies on distribution grids with high RES penetration, namely Li-ion, Zn-Air and Redox Flow. To this end, a benchmark distribution grid with real prosumers’ generation and load profiles is considered, with the RES penetration purposely scaled up in such a way as to violate the grid operational limits. Then, further to the BES(s) placement on the most affected grid location(s), the impact of the three BES types is assessed considering two Use Cases: 1) Voltage & Congestion Management and 2) Peak Shaving & Energy shifting. Assessment is conducted by evaluating a set of technical Key Performance Indicators (KPIs), together with a simplified economic analysis.
DOCUMENT
This whitepaper explores what the impact is of the operating system (OS) of a smartphone on its lifespan, costs and environmental impact.
DOCUMENT
TU Delft, in collaboration with Gravity Energy BV, has conducted a feasibility study on harvesting electric energy from wind and vibrations using a wobbling triboelectric nanogenerator (WTENG). Unlike conventional wind turbines, the WTENG converts wind/vibration energy into contact-separation events through a wobbling structure and unbalanced mass. Initial experimental findings demonstrated a peak power density of 1.6 W/m² under optimal conditions. Additionally, the harvester successfully charged a 3.7V lithium-ion battery with over 4.5 μA, illustrated in a self-powered light mast as a practical demonstration in collaboration with TimberLAB. This project aims to advance this research by developing a functioning prototype for public spaces, particularly lanterns, in partnership with TimberLAB and Gravity Energy. The study will explore the potential of triboelectric nanogenerators (TENG) and piezoelectric materials to optimize energy harvesting efficiency and power output. Specifically, the project will focus on improving the WTENG's output power for practical applications by optimizing parameters such as electrode dimensions and contact-separation quality. It will also explore cost-effective, commercially available materials and best fabrication/assembly strategies to simplify scalability for different length scales and power outputs. The research will proceed with the following steps: Design and Prototype Development: Create a prototype WTENG to evaluate energy harvesting efficiency and the quantity of energy harvested. A hybrid of TENG and piezoelectric materials will be designed and assessed. Optimization: Refine the system's design by considering the scaling effect and combinations of TENG-piezoelectric materials, focusing on maximizing energy efficiency (power output). This includes exploring size effects and optimal dimensions. Real-World Application Demonstration: Assess the optimized system's potential to power lanterns in close collaboration with TimberLAB, DVC Groep BV and Gravity Energy. Identify key parameters affecting the efficiency of WTENG technology and propose a roadmap for its exploitation in other applications such as public space lighting and charging.