The way that innovation is currently done requires a new research methodology that enables co-creation and frequent, iterative evaluation in realworld settings. This paper describes the employment of the living lab methodology that corresponds to this need. Particularly, this paper presents the way that the Amsterdam University of Applies Sciences (HvA) incorporates living labs in its educational program with a particular focus on ambient intelligence. A number of examples are given to illustrate its place in the university’s curriculum. Drawing on from this, problems and solutions are highlighted in a ‘lessons learned’ section.
Experimental Learning and Innovation Environments, such as Living Labs, Field Labs, and Urban Innovation Labs, are increasingly used to connect multi-stakeholders in envisioning, creating, experimenting, learning, and trying out novel responses to diverse societal challenges. With designers facilitating the co-creation processes that take place in these labs, the design discipline plays an important role in these experimental environments. Applied Design Research in Living Labs and other Experimental Learning and Innovation Environments combines a focus on Experimental Learning and Innovation Environments (or Living Labs) with a focus on Applied Design Research. It offers an interdisciplinary perspective by bringing together diverse stakeholders from different disciplines. The book will adopt an interdisciplinary perspective, integrating insights from design, innovation, sociology, technology, and other relevant fields. It showcases real-world examples and case studies of successful Applied Design Research in Living Labs and focuses on design dilemmas that emerge while working in these Experimental Learning and Innovation Environments. The book explores the role of various stakeholders, including the roles that may play out during the development of Experimental Learning and Innovation Environments, and goes on to discuss the balance between fixed or fluid roles of these stakeholders and the polarity between working within one specific discipline versus working with various expertise or disciplines. Designers, government representatives, and researchers who apply a living lab approach to solve multi-stakeholder challenges in various fields by applying Urban Innovation Labs, Energy Living Labs, Mobility Living Labs, Health Living Labs, Education Living Labs, or Social Living Labs will find this book of interest.
LINK
The paper discusses the growing importance of urban freight research given the increasing urban population trends. The complexity of urban freight systems means that it is essential for the public and private sectors to work together - one way to achieve this has been through freight partnerships. A short review of freight partnerships highlights the way in which they have fostered mutual understanding among urban freight stakeholders. The literature on shared situational awareness (SSA) and joint knowledge production (JKP) has been adapted to position freight partnerships and to further develop and link these partnerships to the concept of a living laboratory concerned with urban freight transport. This novel application of the living lab concept is introduced. Next, the first phases of a city logistics living lab brought in practice in Rotterdam are shortly mentioned. The living lab concept fits the complexities of the urban freight system well and has been a cornerstone of a recently started major freight project in the EU (CITYLAB). © 2016 Published by Elsevier B.V.
MULTIFILE
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
For the development of a circular economy and the reduction of the environmental impact of supply chains, the sharing of reliable information throughout the entire chain is a prerequisite. In practice, this is difficult to realise which blockchain can improve. BCLivingLab aims to explore the application of blockchain technology in supply chain and logistics. The project develops four physical hubs and a virtual repository for blockchain knowledge to support SME’s in developing use-cases and experiment with blockchain applications. The ambition is to build a community of interested stakeholders and to be involved in current and future blockchain initiatives.
For the development of a circular economy and the reduction of the environmental impact of supply chains, the sharing of reliable information throughout the entire chain is a prerequisite. In practice, this is difficult to realise which blockchain can improve. BCLivingLab aims to explore the application of blockchain technology in supply chain and logistics. The project develops four physical hubs and a virtual repository for blockchain knowledge to support SME’s in developing use-cases and experiment with blockchain applications. The ambition is to build a community of interested stakeholders and to be involved in current and future blockchain initiatives.