As more and more older adults prefer to stay in their homes as they age, thereandapos;s a need for technology to support this. A relevant technology is Artificial Intelligence (AI)-driven lifestyle monitoring, utilizing data from sensors placed in the home. This technology is not intended to replace nurses but to serve as a support tool. Understanding the specific competencies that nurses require to effectively use it is crucial. The aim of this study is to identify the essential competencies nurses require to work with AI-driven lifestyle monitoring in long-term care.
MULTIFILE
Despite all improvement initiatives such as the national action plan [De-]Regulate Healthcare by the Dutch Ministry of Health, Welfare and Sport in 2018 to create more time for care within the Netherlands, the administrative burden for care workers is still increasing. Managers of healthcare institutes struggle with efficiently implementing government legislations in day-to-day operations. They indicate that the time spent on administrative tasks demanded by municipalities and national authorities is too much. In addition, they also indicate that there is a lack of consistency and uniformity when it comes to the way care workers handle administrative tasks. This way of working causes additional, and often ad hoc, work in the run-up to an audit. It seems that before laws and regulations are effectively implemented, new laws or regulations again demand attention. This looks like a vicious circle, but research to confirm this is not found yet. Therefore, the following research question is formulated: "What is the impact of laws and regulations on the administrative burden with regard to the primary and supportive processes of Dutch long-term care?" An explanatory multiple case study was conducted to answer the research question. Three case studies were carried out during September 2019 to January 2020. Based on these studies, we have concluded that between 29% and 62% of the total perceived administrative burden by long-term care professionals can be related to legislation.
MULTIFILE
Background Clients facing decision-making for long-term care are in need of support and accessible information. Construction of preferences, including context and calculations, for clients in long-term care is challenging because of the variability in supply and demand. This study considers clients in four different sectors of long-term care: the nursing and care of the elderly, mental health care, care of people with disabilities, and social care. The aim is to understand the construction of preferences in real-life situations. Method Client choices were investigated by qualitative descriptive research. Data were collected from 16 in-depth interviews and 79 client records. Interviews were conducted with clients and relatives or informal caregivers from different care sectors. The original client records were explored, containing texts, letters, and comments of clients and caregivers. All data were analyzed using thematic analysis. Results Four cases showed how preferences were constructed during the decision-making process. Clients discussed a wide range of challenging aspects that have an impact on the construction of preferences, e.g. previous experiences, current treatment or family situation. This study describes two main characteristics of the construction of preferences: context and calculation. Conclusion Clients face diverse challenges during the decision-making process on long-term care and their construction of preferences is variable. A well-designed tool to support the elicitation of preferences seems beneficial.
DOCUMENT
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
A feeling of worry, anxiety, loneliness and anticipation are commonplace in both medical and non-medical arenas such as elderly care. An innovative solution such as the ‘simple and effective’ comfyhand would offer better patient care and improved care efficiency with a high chance of long-term, economic efficiency. ComfyHand is a start-up in the healthcare sector that aims to develop sustainable products to improve patient wellbeing in healthcare settings. It does this by emulating the experience of holding a hand which gives the person comfort and support in moments where real human contact is not possible. Right now the comfyhand is in the development phase, working on several prototypes for test trials in elderly care and hospitals. In this project we want to explore the use of 3D printing for producing a comfyhand. Desired properties for the prototype include optimal heat transfer, softness, regulation of sweat, durability and sustainability. The goal of this study is to develop a prototype to test in a trial with patients within Envida, a care centre. The trial itself is out of scope of this project. This proposal focuses on researching the material of choice and the processability. Building on knowledge gained in a previous Kiem GoChem project and a Use Case (Shape3Dup) of a currently running Raak MKB project (Enlighten) on 3D printing of breast prostheses, several materials, designs and printing parameters will be tested.
In this project, we explore how healthcare providers and the creative industry can collaborate to develop effective digital mental health interventions, particularly for survivors of sexual assault. Sexual assault victims face significant barriers to seeking professional help, including shame, self-blame, and fear of judgment. With over 100,000 cases reported annually in the Netherlands the need for accessible, stigma-free support is urgent. Digital interventions, such as chatbots, offer a promising solution by providing a safe, confidential, and cost-effective space for victims to share their experiences before seeking professional care. However, existing commercial AI chatbots remain unsuitable for complex mental health support. While widely used for general health inquiries and basic therapy, they lack the human qualities essential for empathetic conversations. Additionally, training AI for this sensitive context is challenging due to limited caregiver-patient conversation data. A key concern raised by professionals worldwide is the risk of AI-driven chatbots being misused as therapy substitutes. Without proper safeguards, they may offer inappropriate responses, potentially harming users. This highlights the urgent need for strict design guidelines, robust safety measures, and comprehensive oversight in AI-based mental health solutions. To address these challenges, this project brings together experts from healthcare and design fields—especially conversation designers—to explore the power of design in developing a trustworthy, user-centered chatbot experience tailored to survivors' needs. Through an iterative process of research, co-creation, prototyping, and evaluation, we aim to integrate safe and effective digital support into mental healthcare. Our overarching goal is to bridge the gap between digital healthcare and the creative sector, fostering long-term collaboration. By combining clinical expertise with design innovation, we seek to develop personalized tools that ethically and effectively support individuals with mental health problems.