Despite all improvement initiatives such as the national action plan [De-]Regulate Healthcare by the Dutch Ministry of Health, Welfare and Sport in 2018 to create more time for care within the Netherlands, the administrative burden for care workers is still increasing. Managers of healthcare institutes struggle with efficiently implementing government legislations in day-to-day operations. They indicate that the time spent on administrative tasks demanded by municipalities and national authorities is too much. In addition, they also indicate that there is a lack of consistency and uniformity when it comes to the way care workers handle administrative tasks. This way of working causes additional, and often ad hoc, work in the run-up to an audit. It seems that before laws and regulations are effectively implemented, new laws or regulations again demand attention. This looks like a vicious circle, but research to confirm this is not found yet. Therefore, the following research question is formulated: "What is the impact of laws and regulations on the administrative burden with regard to the primary and supportive processes of Dutch long-term care?" An explanatory multiple case study was conducted to answer the research question. Three case studies were carried out during September 2019 to January 2020. Based on these studies, we have concluded that between 29% and 62% of the total perceived administrative burden by long-term care professionals can be related to legislation.
MULTIFILE
Abstract Healthcare organizations operate within a network of governments, insurers, inspection services and other healthcare organizations to provide clients with the best possible care. The parties involved must collaborate and are accountable to each other for the care provided. This has led to a diversity of administrative processes that are supported by a multi-system landscape, resulting in administrative burdens among healthcare professionals. Management methods, such as Enterprise Architecture (EA), should help to develop and manage such landscapes, but they are systematic, while the network of healthcare parties is dynamic. The aim of this research is therefore to develop an EA framework that fits the dynamics of network organizations (such as long-term healthcare). This research proposal outlines the practical and scientific relevance of this research and the proposed method. The current status and next steps are also described.
DOCUMENT
Background Clients facing decision-making for long-term care are in need of support and accessible information. Construction of preferences, including context and calculations, for clients in long-term care is challenging because of the variability in supply and demand. This study considers clients in four different sectors of long-term care: the nursing and care of the elderly, mental health care, care of people with disabilities, and social care. The aim is to understand the construction of preferences in real-life situations. Method Client choices were investigated by qualitative descriptive research. Data were collected from 16 in-depth interviews and 79 client records. Interviews were conducted with clients and relatives or informal caregivers from different care sectors. The original client records were explored, containing texts, letters, and comments of clients and caregivers. All data were analyzed using thematic analysis. Results Four cases showed how preferences were constructed during the decision-making process. Clients discussed a wide range of challenging aspects that have an impact on the construction of preferences, e.g. previous experiences, current treatment or family situation. This study describes two main characteristics of the construction of preferences: context and calculation. Conclusion Clients face diverse challenges during the decision-making process on long-term care and their construction of preferences is variable. A well-designed tool to support the elicitation of preferences seems beneficial.
DOCUMENT
AI-driven lifestyle monitoring systems collect data from ambient, motion, contact, light, and physiological sensors placed in the home, enabling AI algorithms to identify daily routines and detect deviations to support older adults "aging in place." Despite its potential to support several challenges in long-term care for older adults, implementation remains limited. This study explored the facilitators and barriers to implementing AIdriven lifestyle monitoring in long-term care for older adults, as perceived by formal and informal caregivers, as well as management, in both an adopting and non-adopting healthcare organization. A qualitative interview study using semi-structured interviews was conducted with 22 participants (5 informal caregivers, 10 formal caregivers, and 7 participants in a management position) from two long-term care organizations. Reflexive thematic analysis, guided by the nonadoption, abandonment, scale-up, spread, and sustainability (NASSS) framework, structured findings into facilitators and barriers. 12 facilitators and 16 barriers were identified, highlighting AI-driven lifestyle monitoring as a valuable, patient-centred, and unobtrusive tool enhancing care efficiency and caregiver reassurance. However, barriers such as privacy concerns, notification overload, training needs, and organizational alignment must be addressed. Contextual factors, including regulations, partnerships, and financial considerations, further influence implementation. This study showed that to optimize implementation of AI-driven lifestyle monitoring, organizations should address privacy concerns, provide training, engage in system (re)design and create a shared vision. A comprehensive multi-level approach across all levels is essential for successful AI integration in long-term care for older adults.
DOCUMENT
Background: During the process of decision-making for long-term care, clients are often dependent on informal support and available information about quality ratings of care services. However, clients do not take ratings into account when considering preferred care, and need assistance to understand their preferences. A tool to elicit preferences for long-term care could be beneficial. Therefore, the aim of this qualitative descriptive study is to understand the user requirements and develop a web-based preference elicitation tool for clients in need of longterm care. Methods: We applied a user-centred design in which end-users influence the development of the tool. The included end-users were clients, relatives, and healthcare professionals. Data collection took place between November 2017 and March 2018 by means of meetings with the development team consisting of four users, walkthrough interviews with 21 individual users, video-audio recordings, field notes, and observations during the use of the tool. Data were collected during three phases of iteration: Look and feel, Navigation, and Content. A deductive and inductive content analysis approach was used for data analysis. Results: The layout was considered accessible and easy during the Look and feel phase, and users asked for neutral images. Users found navigation easy, and expressed the need for concise and shorter text blocks. Users reached consensus about the categories of preferences, wished to adjust the content with propositions about well-being, and discussed linguistic difficulties. Conclusion: By incorporating the requirements of end-users, the user-centred design proved to be useful in progressing from the prototype to the finalized tool ‘What matters to me’. This tool may assist the elicitation of client’s preferences in their search for long-term care.
DOCUMENT
Purpose: Collaborative deliberation comprises personal engagement, recognition of alternative actions, comparative learning, preference elicitation, and preference integration. Collaborative deliberation may be improved by assisting preference elicitation during shared decision-making. This study proposes a framework for preference elicitation to facilitate collaborative deliberation in long-term care consultations. Methods: First, a literature overview was conducted comprising current models for the elicitation of preferences in health and social care settings. The models were reviewed and compared. Second, qualitative research was applied to explore those issues that matter most to clients in long-term care. Data were collected from clients in long-term care, comprising 16 interviews, 3 focus groups, 79 client records, and 200 online client reports. The qualitative analysis followed a deductive approach. The results of the literature overview and qualitative research were combined. Results: Based on the literature overview, five overarching domains of preferences were described: “Health”, “Daily life”, “Family and friends”, ”Living conditions”, and “Finances”. The credibility of these domains was confirmed by qualitative data analysis. During interviews, clients addressed issues that matter in their lives, including a “click” with their care professional, safety, contact with loved ones, and assistance with daily structure and activities. These data were used to determine the content of the domains. Conclusion: A framework for preference elicitation in long-term care is proposed. This framework could be useful for clients and professionals in preference elicitation during collaborative deliberation.
DOCUMENT
This dissertation describes a research project about the communication between communication vulnerable people and health care professionals in long-term care settings. Communication vulnerable people experience functional communication difficulties in particular situations, due to medical conditions. They experience difficulties expressing themselves or understanding professionals, and/or professionals experience difficulties understanding these clients. Dialogue conversations between clients and professionals in healthcare, which for example concern health-related goals, activity and participation choices, diagnostics, treatment options, and treatment evaluation, are, however, crucial for successful client-centred care and shared decision making. Dialogue conversations facilitate essential exchanges between clients and healthcare professionals, and both clients and professionals should play a significant role in the conversation. It is unknown how communication vulnerable people and their healthcare professionals experience dialogue conversations and what can be done to support successful communication in these conversations. The aim of this research is to explore how communication vulnerable clients and professionals experience their communication in dialogue conversations in long-term care and how they can best be supported in improving their communication in these conversations.
DOCUMENT
As more and more older adults prefer to stay in their homes as they age, there’s a need for technology to support this. A relevant technology is Artificial Intelligence (AI)-driven lifestyle monitoring, utilizing data from sensors placed in the home. This technology is not intended to replace nurses but to serve as a support tool. Understanding the specific competencies that nurses require to effectively use it is crucial. The aim of this study is to identify the essential competencies nurses require to work with AI-driven lifestyle monitoring in longterm care. Methods: A three round modified Delphi study was conducted, consisting of two online questionnaires and one focus group. A group of 48 experts participated in the study: nurses, innovators, developers, researchers, managers and educators. In the first two rounds experts assessed clarity and relevance on a proposed list of competencies, with the opportunity to provide suggestions for adjustments or inclusion of new competencies. In the third round the items without consensus were bespoken in a focus group. Findings: After the first round consensus was reached on relevance and clarity on n = 46 (72 %) of the competencies, after the second round on n = 54 (83 %) of the competencies. After the third round a final list of 10 competency domains and 61 sub-competencies was finalized. The 10 competency domains are: Fundamentals of AI, Participation in AI design, Patient-centered needs assessment, Personalisation of AI to patients’ situation, Data reporting, Interpretation of AI output, Integration of AI output into clinical practice, Communication about AI use, Implementation of AI and Evaluation of AI use. These competencies span from basic understanding of AIdriven lifestyle monitoring, to being able to integrate it in daily work, being able to evaluate it and communicate its use to other stakeholders, including patients and informal caregivers. Conclusion: Our study introduces a novel framework highlighting the (sub)competencies, required for nurses to work with AI-driven lifestyle monitoring in long-term care. These findings provide a foundation for developing initial educational programs and lifelong learning activities for nurses in this evolving field. Moreover, the importance that experts attach to AI competencies calls for a broader discussion about a potential shift in nursing responsibilities and tasks as healthcare becomes increasingly technologically advanced and data-driven, possibly leading to new roles within nursing.
DOCUMENT
Background: As more and more older adults prefer to stay in their homes as they age, there’s a need for technology to support this. A relevant technology is Artificial Intelligence (AI)-driven lifestyle monitoring, utilizing data from sensors placed in the home. This technology is not intended to replace nurses but to serve as a support tool. Understanding the specific competencies that nurses require to effectively use it is crucial. The aim of this study is to identify the essential competencies nurses require to work with AI-driven lifestyle monitoring in longterm care. Methods: A three round modified Delphi study was conducted, consisting of two online questionnaires and one focus group. A group of 48 experts participated in the study: nurses, innovators, developers, researchers, managers and educators. In the first two rounds experts assessed clarity and relevance on a proposed list of competencies, with the opportunity to provide suggestions for adjustments or inclusion of new competencies. In the third round the items without consensus were bespoken in a focus group. Findings: After the first round consensus was reached on relevance and clarity on n = 46 (72 %) of the competencies, after the second round on n = 54 (83 %) of the competencies. After the third round a final list of 10 competency domains and 61 sub-competencies was finalized. The 10 competency domains are: Fundamentals of AI, Participation in AI design, Patient-centered needs assessment, Personalisation of AI to patients’ situation, Data reporting, Interpretation of AI output, Integration of AI output into clinical practice, Communication about AI use, Implementation of AI and Evaluation of AI use. These competencies span from basic understanding of AIdriven lifestyle monitoring, to being able to integrate it in daily work, being able to evaluate it and communicate its use to other stakeholders, including patients and informal caregivers. Conclusion: Our study introduces a novel framework highlighting the (sub)competencies, required for nurses to work with AI-driven lifestyle monitoring in long-term care. These findings provide a foundation for developing initial educational programs and lifelong learning activities for nurses in this evolving field. Moreover, the importance that experts attach to AI competencies calls for a broader discussion about a potential shift in nursing responsibilities and tasks as healthcare becomes increasingly technologically advanced and data-driven, possibly leading to new roles within nursing.
LINK
Background: Knee and hip osteoarthritis (OA) among older adults account for substantial disability and extensive healthcare use. Effective pain coping strategies help to deal with OA. This study aims to determine the long-term relationship between pain coping style and the course of healthcare use in patients with knee and/or hip OA over 10 years. Methods: Baseline and 10-year follow-up data of 861 Dutch participants with early knee and/or hip OA from the Cohort Hip and Cohort Knee (CHECK) cohort were used. The amount of healthcare use (HCU) and pain coping style were measured. Generalized Estimating Equations were used, adjusted for relevant confounders. Results: At baseline, 86.5% of the patients had an active pain coping style. Having an active pain coping style was significantly (p = 0.022) associated with an increase of 16.5% (95% CI, 2.0–32.7) in the number of used healthcare services over 10 years. Conclusion: Patients with early knee and/or hip OA with an active pain coping style use significantly more different healthcare services over 10 years, as opposed to those with a passive pain coping style. Further research should focus on altered treatment (e.g., focus on self-management) in patients with an active coping style, to reduce HCU.
DOCUMENT