Introduction: Illness Perceptions (IPs) may play a role in the management of persistent low back pain. The mediation and/or moderation effect of IPs on primary outcomes in physiotherapy treatment is unknown. Methods: A multiple single-case experimental design, using a matched care physiotherapy intervention, with three phases (phases A-B-A’) was used including a 3 month follow up (phase A’). Primary outcomes: pain intensity, physical functioning and pain interference in daily life. Analyzes: linear mixed models, adjusted for fear of movement, catastrophizing, avoidance, sombreness and sleep. Results: Nine patients were included by six different primary care physiotherapists. Repeated measures on 196 data points showed that IPs Consequences, Personal control, Identity, Concern and Emotional response had a mediation effect on all three primary outcomes. The IP Personal control acted as a moderator for all primary outcomes, with clinically relevant improvements at 3 month follow up. Conclusion: Our study might indicate that some IPs have a mediating or a moderating effect on the outcome of a matched care physiotherapy treatment. Assessing Personal control at baseline, as a relevant moderator for the outcome prognosis of successful physiotherapy management of persistent low back pain, should be further eplored.
DOCUMENT
Introduction Negative pain-related cognitions are associated with persistence of low-back pain (LBP), but the mechanism underlying this association is not well understood. We propose that negative pain-related cognitions determine how threatening a motor task will be perceived, which in turn will affect how lumbar movements are performed, possibly with negative long-term effects on pain. Objective To assess the effect of postural threat on lumbar movement patterns in people with and without LBP, and to investigate whether this effect is associated with task-specific pain-related cognitions. Methods 30 back-healthy participants and 30 participants with LBP performed consecutive two trials of a seated repetitive reaching movement (45 times). During the first trial participants were threatened with mechanical perturbations, during the second trial participants were informed that the trial would be unperturbed. Movement patterns were characterized by temporal variability (CyclSD), local dynamic stability (LDE) and spatial variability (meanSD) of the relative lumbar Euler angles. Pain-related cognition was assessed with the task-specific ‘Expected Back Strain’-scale (EBS). A three-way mixed Manova was used to assess the effect of Threat, Group (LBP vs control) and EBS (above vs below median) on lumbar movement patterns. Results We found a main effect of threat on lumbar movement patterns. In the threat-condition, participants showed increased variability (MeanSDflexion-extension, p<0.000, η2 = 0.26; CyclSD, p = 0.003, η2 = 0.14) and decreased stability (LDE, p = 0.004, η2 = 0.14), indicating large effects of postural threat. Conclusion Postural threat increased variability and decreased stability of lumbar movements, regardless of group or EBS. These results suggest that perceived postural threat may underlie changes in motor behavior in patients with LBP. Since LBP is likely to impose such a threat, this could be a driver of changes in motor behavior in patients with LBP, as also supported by the higher spatial variability in the group with LBP and higher EBS in the reference condition.
LINK
BACKGROUND: The Quebec Back Pain Disability Scale (QBPDS) has been translated into different languages, and several studies on its measurement properties have been done. PURPOSE: The purpose of this review was to critically appraise and compare the measurement properties, when possible, of all language versions of the QBPDS by systematically reviewing the methodological quality and results of the available studies. METHOD: Bibliographic databases (PubMed, Embase, CINAHL, and PsycINFO) were searched for articles with the key words "Quebec," "back," "pain," and "disability" in combination with a methodological search filter for finding studies on measurement properties concerning the development or evaluation of the measurement properties of the QBPDS in patients with nonspecific low back pain. Assessment of the methodological quality was carried out by the reviewers using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist for both the original language version of the QBPDS in English and French and all translated versions. The results of the measurement properties were rated based on criteria proposed by Terwee et al. RESULTS: The search strategy resulted in identification of 1,436 publications, and 27 articles were included in the systematic review. There was limited-to-moderate evidence of good reliability, validity, and responsiveness of the QBPDS for the different language versions, but for no language version was evidence available for all measurement properties. CONCLUSION: For research and clinical practice, caution is advised when using the QBPDS to measure disability in patients with nonspecific low back pain. Strong evidence is lacking on all measurement properties for each language version of the QBPDS.
DOCUMENT
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
Various companies in diagnostic testing struggle with the same “valley of death” challenge. In order to further develop their sensing application, they rely on the technological readiness of easy and reproducible read-out systems. Photonic chips can be very sensitive sensors and can be made application-specific when coated with a properly chosen bio-functionalized layer. Here the challenge lies in the optical coupling of the active components (light source and detector) to the (disposable) photonic sensor chip. For the technology to be commercially viable, the price of the disposable photonic sensor chip should be as low as possible. The coupling of light from the source to the photonic sensor chip and back to the detectors requires a positioning accuracy of less than 1 micrometer, which is a tremendous challenge. In this research proposal, we want to investigate which of the six degrees of freedom (three translational and three rotational) are the most crucial when aligning photonic sensor chips with the external active components. Knowing these degrees of freedom and their respective range we can develop and test an automated alignment tool which can realize photonic sensor chip alignment reproducibly and fully autonomously. The consortium with expertise and contributions in the value chain of photonics interfacing, system and mechanical engineering will investigate a two-step solution. This solution comprises a passive pre-alignment step (a mechanical stop determines the position), followed by an active alignment step (an algorithm moves the source to the optimal position with respect to the chip). The results will be integrated into a demonstrator that performs an automated procedure that aligns a passive photonic chip with a terminal that contains the active components. The demonstrator is successful if adequate optical coupling of the passive photonic chip with the external active components is realized fully automatically, without the need of operator intervention.
Alcohol use disorder (AUD) is a pattern of alcohol use that involves having trouble controlling drinking behaviour, even when it causes health issues (addiction) or problems functioning in daily (social and professional) life. Moreover, festivals are a common place where large crowds of festival-goers experience challenges refusing or controlling alcohol and substance use. Studies have shown that interventions at festivals are still very problematic. ARise is the first project that wants to help prevent AUD at festivals using Augmented Reality (AR) as a tool to help people, particular festival visitors, to say no to alcohol (and other substances). ARise is based on the on the first Augmented Reality Exposure Therapy (ARET) in the world that we developed for clinical treatment of AUD. It is an AR smartphone driven application in which (potential) visitors are confronted with virtual humans that will try to seduce the user to accept an alcoholic beverage. These virtual humans are projected in the real physical context (of a festival), using innovative AR glasses. Using intuitive phone, voice and gesture interactions, it allows users to personalize the safe experience by choosing different drinks and virtual humans with different looks and levels of realism. ARET has been successfully developed and tested on (former) AUD patients within a clinical setting. Research with patients and healthcare specialists revealed the wish to further develop ARET as a prevention tool to reach people before being diagnosed with AUD and to extend the application for other substances (smoking and pills). In this project, festival visitors will experience ARise and provide feedback on the following topics: (a) experience, (b) awareness and confidence to refuse alcohol drinks, (c) intention to use ARise, (d) usability & efficiency (the level of realism needed), and (e) ideas on how to extend ARise with new substances.