With the effects of climate change linked to the use of fossil fuels, as well as the prospect of their eventual depletion, becoming more noticeable, political establishment and society appear ready to switch towards using renewable energy. Solar power and wind power are considered to be the most significant source of global low-carbon energy supply. Wind energy continues to expand as it becomes cheaper and more technologically advanced. Yet, despite these expectations and developments, fossil fuels still comprise nine-tenths of the global commercial energy supply. In this article, the history, technology, and politics involved in the production and barriers to acceptance of wind energy will be explored. The central question is why, despite the problems associated with the use of fossil fuels, carbon dependency has not yet given way to the more ecologically benign forms of energy. Having briefly surveyed some literature on the role of political and corporate stakeholders, as well as theories relating to sociological and psychological factors responsible for the grassroots’ resistance (“not in my backyard” or NIMBYs) to renewable energy, the findings indicate that motivation for opposition to wind power varies. While the grassroots resistance is often fueled by the mistrust of the government, the governments’ reason for resisting renewable energy can be explained by their history of a close relationship with the industrial partners. This article develops an argument that understanding of various motivations for resistance at different stakeholder levels opens up space for better strategies for a successful energy transition. https://doi.org/10.30560/sdr.v1n1p11 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
The current western agrifood system is highly successful in providing for human needs. However, the dominant agricultural approach of up-scaling and specialisation is put under pressure by a number of developments in the global landscape. Global developments such as population growth, pollution, soil degradation and climate change, in which agriculture plays a crucial role, make the need for a transition towards a paradigm with a broader range of values evident. Niche initiatives often develop as a reaction to needs not fulfilled by the regime. Therefore, certain niches may have the potential of driving a necessary transition. This research aims to determine if permaculture, being a niche, has this potential. The main question for this research was formulated as follows: How can a production system based on permaculture principles contribute to the agrifood transition? To answer this question, relevant current trends and global developments were used as a basis for developing a future scenario. Empirical qualitative data on permaculture businesses in the Netherlands was gathered as well, of which the results were used for a determination of permaculture’s performance in this future scenario. This was done by comparing a standardised permaculture system with a conventional potato system. As a result of this comparison, the Unique Selling Points of permaculture were identified, which determine the future potential of permaculture.
MULTIFILE
The Netherlands is a frontrunner in the field of public charging infrastructure, having a high number of public charging stations per electric vehicle (EV) in the world. During the early years of adoption (2012-2015) a large percentage of the EV fleet were Plugin Hybrid Electric Vehicles (PHEV)due to the subsidy scheme at that time. With an increasing number of Full Electric Vehicles (FEVs) on the market and a current subsidy scheme for FEV only, a transition of the EV fleet from PHEV to FEV is expected. This is hypothesized to have effect on charging behavior of the complete fleet, reason to understand better how PHEVs and FEVs differ in charging behavior and how this impacts charging infrastructure usage. In this paper, the effects of the transition of PHEV to FEV is simulated by extending an existing Agent Based Model. Results show important effects of this transitionon charging infrastructure performance.