Oil extraction from Andean lupin beans (Lupinus mutabilis SWEET) via supercritical carbon dioxide (scCO2) was studied on both lab scale and pilot scale. On the lab scale, the effect of pressure, solvent-to-feed ratio (S/F), sample particle size and temperature on oil yield were evaluated. The oil quality (fatty acid [FA] composition and tocopherol content) were investigated. Five-hour scCO2 extraction yielded about 86% oil of Soxhlet extraction (using hexane as solvent). The fraction of unsaturated FA rose with extraction pressure at specific time. High tocopherol contents were detected in oils extracted at low pressure. An increase in temperature was unfavorable to oil and tocopherol yield, thereby confirming the validity for preserving oil extract quality under a mild scCO2 extraction condition. Oil quality and yield did not have identical optimum settings, opening up possibilities for producing different qualities of oils. Pilot-scale extraction offered comparable oil yield to lab-scale extraction at similar S/F ratio. Economic evaluation showed that it is promising to implement industrial scale scCO2 process for lupin oil extraction. It was predicted that, at a specific industrial scale of extraction (2 × 1000 L, 550 bar, 40°C and S/F of 24), the manufacturing cost of oils got close to actual commercial production cost.
Lupinus mutabilis is an important source of protein in different Andean countries, and its use in diets, particularly those of less wealthy individuals, has been observed for thousands of years. There is an increasing demand for protein crops suitable for Europe and this species is a potential candidate. Assessment of Lupinus mutabilis genetic material in European conditions started more than 40 years ago, with the characterization of a vast number of accessions from the Andean region. In this review, abiotic and biotic constraints to L. mutabilis cultivation in European soil and climatic conditions are discussed, and cultivation management practices are suggested. The beneficial interaction of L. mutabilis with Bradyrhizobium strains in the soil and various pollinator species is also discussed, and the effect of abiotic stresses on these interactions is highlighted. Prospects of alternative uses of L. mutabilis biomass in Northern Europe and opportunities for breeding strategies are discussed. In conclusion, the different approach to crop modeling for Southern and Northern European climatic conditions is highlighted
This project has received funding from the Bio-based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 720726LIBBIO is a European research project on Andes Lupin (Lupinus mutabilis, tarwi) cropping in marginal lands for enhanced bio economy. Lupin has the ability to fix nitrogen, mobilise soil phosphate and has low nutritional requirements for cultivation. Varieties will be chosen that give high yield of green silage or high yield of seeds which contain more than 20% oil, more than 40% protein and the remaining materials are carbohydrates, mainly oligosaccharides characterized as “prebiotics”. Andes lupin will be grown as a summer crop in N-central Europe and as winter crop in Mediterranean conditions. Pre-industrial processing is developed and optimized for the lupin, properties of the different fractions analysed, their advantage for different industrial use evaluated, and a few products developed as an example. Social and environmental impact will be evaluated as well as techno-economic viability and effect on farm and biorefinery income.This project has received funding from the Bio-based Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 720726