In November 2019, the High Performance Greenhouse project (HiPerGreen) was nominated for the RAAK Award 2019, as one of the best applied research projects in the Netherlands. This paper discusses the challenges faced, lessons learned and critical factors in making the project into a success.
DOCUMENT
These are hard days for companies: they have to survive in a market that has been hit by a financial crisis. Many countries in Europe have severe problems trying to overcome this financial crisis. The main remedy applied by governments is to cut back on expenditure, but on the other hand it is said that it is important for a country, and especially for companies, to invest in innovation. These innovations should lead to innovative products that will lead to profitability turnovers for these companies and, as a consequence, improve the economic conditions in a country. Universities provide students with engineering competences, like develop innovation, with which they can show a higher degree of ability to answer complex questions such as how to become players in the market again. Teaching students to become more innovative engineers, Fontys University of Applied Sciences, Department of Engineering, has designed a curriculum in which students are educated in the competence innovation. An important element in the process of teaching innovation to students is the approach of inquiring into possibilities of patents. In the second semester of the first year, students can decide to join an innovative project called: ‘The invention project’. The basis of this project is that students are given the opportunity to create their own invention and with their previously acquired knowledge and skills they design, calculate, prototype and present their invention. In a research project, the experiences of students in this Invention Project have been analysed. The goal of this study was to understand what the success factors are for such a project. The basis of this inquiry is a questionnaire to identify the opinions of students. The research was carried out in the spring semester of 2012. In total 31 students were involved in this research. The results show that there was a high degree of student satisfaction about the Invention Project focused on innovation development. Success factors for this project in the first year of the curriculum were seen: 1 to work on own inventions, 2 development of student’s perception of the total product creation process and 3 to make students see the relevance of contacts with real professionals from industry and from the patent office in their own project. Improvements can be made by: 1 helping students more during the creativity stage in the project and 2 to coach them more on the aspect of engineering a successful invention of which they can be proud. This Invention project is a interesting with which collaborations with other universities can be set up.
DOCUMENT
Author-supplied abstract: Developing large-scale complex systems in student projects is not common, due to various constraints like available time, student team sizes, or maximal complexity. However, we succeeded to design a project that was of high complexity and comparable to real world projects. The execution of the project and the results were both successful in terms of quality, scope, and student/teacher satisfaction. In this experience report we describe how we combined a variety of principles and properties in the project design and how these have contributed to the success of the project. This might help other educators with setting up student projects of comparable complexity which are similar to real world projects.
DOCUMENT
Over the last two decades, institutions for higher education such as universities and colleges have rapidly expanded and as a result have experienced profound changes in processes of research and organization. However, the rapid expansion and change has fuelled concerns about issues such as educators' technology professional development. Despite the educational value of emerging technologies in schools, the introduction has not yet enjoyed much success. Effective use of information and communication technologies requires a substantial change in pedagogical practice. Traditional training and learning approaches cannot cope with the rising demand on educators to make use of innovative technologies in their teaching. As a result, educational institutions as well as the public are more and more aware of the need for adequate technology professional development. The focus of this paper is to look at action research as a qualitative research methodology for studying technology professional development in HE in order to improve teaching and learning with ICTs at the tertiary level. The data discussed in this paper have been drawn from a cross institutional setting at Fontys University of Applied Sciences, The Netherlands. The data were collected and analysed according to a qualitative approach.
DOCUMENT
Innovation is crucial for higher education to ensure high-quality curricula that address the changing needs of students, labor markets, and society as a whole. Substantial amounts of resources and enthusiasm are devoted to innovations, but often they do not yield the desired changes. This may be due to unworkable goals, too much complexity, and a lack of resources to institutionalize the innovation. In many cases, innovations end up being less sustainable than expected or hoped for. In the long term, the disappointing revenues of innovations hamper the ability of higher education to remain future proof. Against the background of this need to increase the success of educational innovations, our colleague Klaartje van Genugten has explored the literature on innovations to reveal mechanisms that contribute to the sustainability of innovations. Her findings are synthesized in this report. They are particularly meaningful for directors of education programs, curriculum committees, educational consultants, and policy makers, who are generally in charge of defining the scope and set up of innovations. Her report offers a comprehensive view and provides food for thought on how we can strive for future-proof and sustainable innovations. I therefore recommend reading this report.
DOCUMENT
Individuals with autism increasingly enroll in universities, but little is known about predictors for their success. This study developed predictive models for the academic success of autistic bachelor students (N=101) in comparison to students with other health conditions (N=2465) and students with no health conditions (N=25,077). We applied propensity score weighting to balance outcomes. The research showed that autistic students’ academic success was predictable, and these predictions were more accurate than predictions of their peers’ success. For first-year success, study choice issues were the most important predictors (parallel program and application timing). Issues with participation in pre-education (missingness of grades in pre-educational records) and delays at the beginning of autistic students’ studies (reflected in age) were the most influential predictors for the second-year success and delays in the second and final year of their bachelor’s program. In addition, academic performance (average grades) was the strongest predictor for degree completion in 3 years. These insights can enable universities to develop tailored support for autistic students. Using early warning signals from administrative data, institutions can lower dropout risk and increase degree completion for autistic students.
DOCUMENT
From the article: "The object of this paper is to explore the actual practice in project management education in the Netherlands and compare it to reference institutions and recent literature. A little over 40% of the Higher Education institutions in the Netherlands mentions PM education in programs and/or courses. A total of 264 courses, minors and programs in the Netherlands found. In reference institutions 33 courses and programs are found and 36 publications deal with actual teaching of project management in Higher Education. Comparing these sources finds traditional methods of teaching and testing, a roughly comparable focus on subjects and an unsupported high claim of learning level, while the number of credits assigned to project management is relatively small. There is a strong focus on planning without execution, which is critiqued as is the promoted Project Based Learning."
DOCUMENT
From the article: "The vast amount of previous research on project management competence does not provide a basis for educational needs. Analyzing previous research poses two challenges: the lack of a uniform list of competences, necessitating a taxonomy, and the use of importance as a criterion, favoring general important competences. Criticality is introduced as the competence a project manager adds to the team. Validation research using criticality and the taxonomy among experienced Dutch project managers is more comprehensive and provides a less focus on general important competences than previous research. Criticality focuses more on the essence of the profession."
MULTIFILE
For delayed and long-term students, the education process is often a lonely journey. The main conclusion of this research is that learning should not be an individual process of the student connected to one lecturer, but rather a community where learning is a collective journey. The social interaction between lecturers, groups of delayed students and other actors is an important engine for arriving at the new knowledge, insights and expertise that are important to reach their final level. This calls for the design of social structures and the collaboration mechanism that enable the bonding of all members in the community. By making use of this added value, new opportunities for the individual are created that can lead to study success. Another important conclusion is that in the design and development of learning communities, sufficient attention must be paid to cultural characteristics. Students who delay are faced with a loss of self-efficacy and feelings of shame and guilt. A learning community for delayed students requires a culture in which students can turn this experience into an experience of self-confidence, hope and optimism. This requires that the education system pays attention to language use, symbols and rituals to realise this turn. The model ‘Building blocks of a learning environment for long-term students’ contains elements that contribute to the study success of delayed and long-term students. It is the challenge for every education programme to use it in an appropriate way within its own educational context. Each department will have to explore for themselves how these elements can be translated into the actions, language, symbols and rituals that are suitable for their own target group.
DOCUMENT
Entrepreneurship stands high on the political European agenda. Its meaning is twofold: entrepreneurship as a career opportunity, or as a competency. Following the statement made in Europe, national governments have defined an urgent need to stimulate entrepreneurial talent and motivate students to become entrepreneurs to start and develop new businesses that will generate employment and create economic and social wealth. Developing entrepreneurship education and training initiatives is one way of helping to achieve this goal. According to the European commission (2008), the teaching of entrepreneurship is not yet sufficiently integrated in higher education institutions' curricula. So the real challenge is to build campus-wide, inter-disciplinary approaches, making entrepreneurship education accessible to all students. At The Hague University of Applied Sciences we develop programs to stimulate entrepreneurship. The question is: to what extent do these programs contribute towards the development of entrepreneurial competencies, in other words: can entrepreneurship be taught? And furthermore, to what extent do the programs contribute to the success of new start-ups by students that followed our programs? Over the last five years time more than 200 students have taken part in three different electives developed in our centre. Some of the findings of our research are that students indeed develop entrepreneurial competencies (Harkema & Schout, 2008). This can partly be attributed to the pedagogical concept underlying the programs. The next step is to determine whether the acquired competencies developed in the program among students that have set up their own business, help them in their business and are accountable for their business success. In this paper we report on the preliminary findings of our research among a sample group of alumni that have followed different programs and set up their own business.
DOCUMENT