Transboundary conservation has an important, yet often undervalued, role in the international conservation regime. When applied to the legally ambiguous and interconnected marine environment this is magnified. The lack of clear guidance for transboundary marine conservation from the international conservation community exacerbates this problem, leaving individual initiatives to develop their own governance arrangements. Yet, well-managed transboundary marine protected areas (MPAs) have the potential to contribute significantly to global conservation aims. Conversely, in a period where there is increasing interest in marine resources and space from all sectors, the designation of MPAs can create or amplify a regional conflict. In some instances, states have used MPAs to extend rights over disputed marine resources, restrict the freedom of others and establish sovereignty over maritime space. Six case studies were taken from Europe, North Africa and the Middle East to illustrate how states have interpreted and utilized different legislative mechanisms to either come together or diverge over the governance of marine resources or maritime space. Each of the case studies illustrates how different actors have used the same legislative tools, but with different interpretations and applications, to justify their claims. It is clear that the role of science combined with a deeper engagement with stakeholders can play a critical role in tempering conflict between states. Where states are willing to cooperate, the absence of clear guidelines at the global level means that often ad hoc measures are put into place, with the international frameworks then playing catch up. Balancing different jurisdictional claims with the conservation of the marine environment, whilst considering the increasing special economic interests will become increasingly difficult. Developing a transboundary conservation tool, such as the simple conservation caveats found in the Barcelona Convention and Antarctic Convention, which allow for the establishment of intergovernmental cooperation without prejudicing any outstanding jurisdictional issue, would provide a framework for the development of individual transboundary MPAs.
MULTIFILE
Like most ocean regions today, the European and contiguous seas experience cumulative impacts from local human activities and global pressures. They are largely in poor environmental condition with deteriorating trends. Despite several success stories, European policies for marine conservation fall short of being effective. Acknowledging the challenges for marine conservation, a 4-year multi-national network, MarCons, supported collaborative marine conservation efforts to bridge the gap between science, management and policy, aiming to contribute in reversing present negative trends. By consolidating a large network of more than 100 scientists from 26 countries, and conducting a series of workshops over 4 years (2016–2020), MarCons analyzed challenges, opportunities and obstacles for advancing marine conservation in the European and contiguous seas. Here, we synthesize the major issues that emerged from this analysis and make 12 key recommendations for policy makers, marine managers, and researchers. To increase the effectiveness of marine conservation planning, we recommend (1) designing coherent networks of marine protected areas (MPAs) in the framework of marine spatial planning (MSP) and applying systematic conservation planning principles, including re-evaluation of existing management zones, (2) designing MPA networks within a broader transboundary planning framework, and (3) implementing integrated land-freshwater-sea approaches. To address inadequate or poorly informed management, we recommend (4) developing and implementing adaptive management plans in all sites of the Natura 2000 European conservation network and revising the Natura 2000 framework, (5) embedding and implementing cumulative effects assessments into a risk management process and making them operational, and (6) promoting actions to reach ‘good environmental status’ in all European waters. To account for global change in conservation planning and management, we further recommend (7) developing conservation strategies to address the impacts of global change, for example identifying climate-change refugia as high priority conservation areas, and (8) incorporating biological invasions in conservation plans and prioritizing management actions to control invasive species. Finally, to improve current practices that may compromise the effectiveness of conservation actions, we recommend (9) reinforcing the collection of high-quality open-access data, (10) improving mechanisms for public participation in MPA planning and management, (11) prioritizing conservation goals in full collaboration with stakeholders, and (12) addressing gender inequality in marine sciences and conservation.
MULTIFILE
Camera trap technology has galvanized the study of predator-prey ecology in wild animal communities by expanding the scale and diversity of predator-prey interactions that can be analyzed. While observational data from systematic camera arrays have informed inferences on the spatiotemporal outcomes of predator-prey interactions, the capacity for observational studies to identify mechanistic drivers of species interactions is limited. Experimental study designs that utilize camera traps uniquely allow for testing hypothesized mechanisms that drive predator and prey behavior, incorporating environmental realism not possible in the lab while benefiting from the distinct capacity of camera traps to generate large data sets from multiple species with minimal observer interference. However, such pairings of camera traps with experimental methods remain underutilized. We review recent advances in the experimental application of camera traps to investigate fundamental mechanisms underlying predator-prey ecology and present a conceptual guide for designing experimental camera trap studies. Only 9% of camera trap studies on predator-prey ecology in our review mention experimental methods, but the application of experimental approaches is increasing. To illustrate the utility of camera trap-based experiments using a case study, we propose a study design that integrates observational and experimental techniques to test a perennial question in predator-prey ecology: how prey balance foraging and safety, as formalized by the risk allocation hypothesis. We discuss applications of camera trap-based experiments to evaluate the diversity of anthropogenic influences on wildlife communities globally. Finally, we review challenges to conducting experimental camera trap studies. Experimental camera trap studies have already begun to play an important role in understanding the predator-prey ecology of free-living animals, and such methods will become increasingly critical to quantifying drivers of community interactions in a rapidly changing world. We recommend increased application of experimental methods in the study of predator and prey responses to humans, synanthropic and invasive species, and other anthropogenic disturbances.
MULTIFILE
The Hereon team has expressed interest in the use of the PO platform for the virtualization of the (hydro)dynamic behavior of offshore wind farms, in particular regarding turbidity around wind turbines. BUas has developed the Procedural Ocean (PO) platform. The platform uses procedural content generation (AI) for data-driven 3D virtualization of complex marine and maritime environments, with elements such as geo-environment (bathymery, etc.), geo-physics (weather conditions, waves), wind farms, aquaculture, shipping, ecology, and more. The virtual and immersive environment in the game engine Unreal supports advanced (game-like) user interaction for policy-oriented learning (marine spatial planning), ocean management, and decision making. We therefore propose a joint pilot Research and Development (R&D) project to explore, demonstrate and validate how a gridded dataset provided by Hereon can show the dynmics around wind farm monopiles. Furthermore, we can explore interactivity with the engineering and design of the turbine and the multiplication of the turbine design to compose a wind farm. Client: Hereon (The Helmholtz-Zentrum Hereon is a non-profit making research institute )