Traces of condom lubricants in fingerprints can be valuable information in cases of sexual assault. Ideally, not only confirmation of the presence of the condom but also determination of the type of condom brand used can be retrieved. Previous studies have shown to be able to retrieve information about the condom brand and type from fingerprints containing lubricants using various analytical techniques. However, in practice fingerprints often appear latent and need to be detected first, which is often achieved by cyanoacrylate fuming. In this study, we developed a desorption electrospray ionization mass spectrometry (DESI-MS) method which, combined with principal component analysis and linear discriminant analysis (PCA-LDA), allows for high accuracy classification of condom brands and types from fingerprints containing condom lubricant traces. The developed method is compatible with cyanoacrylate (CA) fuming. We collected and analyzed a representative dataset for the Netherlands comprising 32 different condoms. Distinctive lubricant components such as polyethylene glycol (PEG), polydimethylsiloxane (PDMS), octoxynol-9 and nonoxynol-9 were readily detected using the DESI-MS method. Based on the analysis of lubricant spots, a 99.0% classification accuracy was achieved. When analyzing lubricant containing fingerprints, an overall accuracy of 90.9% was obtained. Full chemical images could be generated from fingerprints, showing the distribution of lubricant components such as PEG and PDMS throughout the fingerprint, while still allowing for classification. The developed method shows potential for the development of DESI-MS based analyses of CA treated exogenous compounds from fingerprints for use in forensic science.
MULTIFILE
We have investigated the photoionization and photodissociation of free coronene cations C24H12+ upon soft X-ray photoabsorption in the carbon K-edge region by means of a time-of-flight mass spectrometry approach. Core excitation into an unoccupied molecular orbital (below threshold) and core ionization into the continuum both leave a C 1s vacancy, that is subsequently filled in an Auger-type process. The resulting coronene dications and trications are internally excited and cool down predominantly by means of hydrogen emission. Density functional theory was employed to determine the dissociation energies for subsequent neutral hydrogen loss. A statistical cascade model incorporating these dissociation energies agrees well with the experimentally observed dehydrogenation. For double ionization, i.e., formation of intermediate C24H123+trications, the experimental data hint at loss of H+ ions. This asymmetric fission channel is associated with hot intermediates, whereas colder intermediates predominantly decay via neutral H loss.
LINK
This report presents the highlights of the 7th European Meeting on Molecular Diagnostics held in Scheveningen, The Hague, The Netherlands, 12-14 October 2011. The areas covered included molecular diagnostics applications in medical microbiology, virology, pathology, hemato-oncology,clinical genetics and forensics. Novel real-time amplification approaches, novel diagnostic applications and new technologies, such as next-generation sequencing, PCR lectrospray-ionization TOF mass spectrometry and techniques based on the detection of proteins or other molecules, were discussed. Furthermore, diagnostic companies presented their future visions for molecular diagnostics in human healthcare.
DOCUMENT
Fingerprints are widely used in forensic science for individualization purposes. However, not every fingermark found at a crime scene is suitable for comparison, for instance due to distortion of ridge detail, or when the reference fingerprint is not in the database. To still retrieve information from these fingermarks, several studies have been initiated into the chemical composition of fingermarks, which is believed to be influenced by several donor traits. Yet, it is still unclear what donor information can be retrieved from the composition of one's fingerprint, mainly because of limited sample sizes and the focus on analytical method development. It this paper, we analyzed the chemical composition of 1852 fingerprints, donated by 463 donors during the Dutch music festival Lowlands in 2016. In a targeted approach we compared amino acid and lipid profiles obtained from different types of fingerprints. We found a large inter-variability in both amino acid and lipid content, and significant differences in L-(iso)leucine, L-phenylalanine and palmitoleic acid levels between male and female donors. In an untargeted approach we used full-scan MS data to generate classification models to predict gender (77.9% accuracy) and smoking habit (90.4% accuracy) of fingerprint donors. In the latter, putatively, nicotine and cotinine are used as predictors.
MULTIFILE
The performance of neural electrodes in physiological fluid, especially in chronic use, is critical for the success of functional electrical stimulation devices. Tips of the Utah electrode arrays (UEAs) were coated with sputtered iridium oxide film (SIROF) and activated iridium oxide film (AIROF) to study the degradation during charge injection consistent with functional electrical stimulation (FES). The arrays were subjected to continuous biphasic, cathodal first, charge balanced (with equal cathodal and anodal pulse widths) current pulses for 7 h (>1 million pulses) at a frequency of 50 Hz. The amplitude and width of the current pulses were varied to determine the damage threshold of the coatings. Degradation was characterized by scanning electron microscopy, inductively coupled plasma mass spectrometry, electrochemical impedance spectroscopy and cyclic voltammetry. The injected charge and charge density per phase were found to play synergistic role in damaging the electrodes. The damage threshold for SIROF coated electrode tips of the UEA was between 60 nC with a charge density of 1.9 mC/cm2 per phase and 80 nC with a charge density of 1.0 mC/cm2 per phase. While for AIROF coated electrode tips, the threshold was between 40 nC with a charge density of 0.9 mC/cm2 per phase and 50 nC with a charge density of 0.5 mC/cm2 per phase. Compared to AIROF, SIROF showed higher damage threshold and therefore is highly recommended to be used as a stimulation material.
DOCUMENT
Matrix-assisted laser desorption/ionisation time of-flight mass spectrometry (MALDI-TOF MS) is a fast and reliable method for the identification of bacteria from agar media. Direct identification from positive blood cultures should decrease the time to obtaining the result. In this study, three different processing methods for the rapid direct identification of bacteria from positive blood culture bottles were compared. In total, 101 positive aerobe BacT/ALERT bottles were included in this study. Aliquots from all bottles were used for three bacterial processing methods, i.e. the commercially available Bruker's MALDI Sepsityper kit, the commercially available Molzym's MolYsis Basic5 kit and a centrifugation/washing method. In addition, the best method was used to evaluate the possibility of MALDI application after a reduced incubation time of 7 h of Staphylococcus aureus- and Escherichia coli-spiked (1,000, 100 and 10 colony-forming units [CFU]) aerobe BacT/ALERT blood cultures. Sixty-six (65%), 51 (50.5%) and 79 (78%) bottles were identified correctly at the species level when the centrifugation/washing method, MolYsis Basic 5 and Sepsityper were used, respectively. Incorrect identification was obtained in 35 (35%), 50 (49.5%) and 22 (22%) bottles, respectively. Gram-positive cocci were correctly identified in 33/52 (64%) of the cases. However, Gram-negative rods showed a correct identification in 45/47 (96%) of all bottles when the Sepsityper kit was used. Seven hours of pre-incubation of S. aureus- and E. coli-spiked aerobe BacT/ALERT blood cultures never resulted in reliable identification with MALDI-TOF MS. Sepsityper is superior for the direct identification of microorganisms from aerobe BacT/ALERT bottles. Gram-negative pathogens show better results compared to Gram-positive bacteria. Reduced incubation followed by MALDI-TOF MS did not result in faster reliable identification.
DOCUMENT
The anthocyanin composition of five purple leaves cultivars of Ocimum basilicum L. was investigated by reversed-phase HPLC with mass-spectrometric detection by ESI mode with ion partial fragmentation as well as preparation of dried differently colored forms of anthocyanins encapsulated into maltodextrinmatrix. Analysis of the mass spectra revealed that according to the chromatographic profile the set of basil cultivar anthocyanins under investigation may be divided into two groups with the common feature being ahigh level of acylation with (mainly) p-coumaric, ferulic and malonic acids of the same base: cyanidin-3-dihexoside-5-hexoside. The presence of acylation with substituted cinnamic acids permits us to obtain solutions not only with a red color (the property of the flavylium form) but also with blue shades of coloration due to quinonoid and negatively charged quinonoid forms. All forms except that of flavylium are not stable in solution but stable enough to prepare dried encapsulated forms by lyophilization. Although the loss of anthocyaninswith drying is not negligible, the final product is characterized with high stability for storage in a refrigerator.
DOCUMENT
Five methods were compared to determine the best technique for accurate identification of coagulase-negative staphylococci (CoNS) (n=142 strains). MALDI-TOF MS showed the best results for rapid and accurate CoNS differentiation (correct identity in 99.3%). An alternative to this approach could be Vitek2 combined with partial tuf gene sequencing.
DOCUMENT
UPLC-MS is a commonly used technique to first separate complex samples and subsequently quantify molecules of interest. Herein we describe the use of UPLC-MS using an amide stationary phase to quantify non-derivatized amino acids extracted from fingerprints. As detector either a triple-quadrupole MS/MS or a TOF-MS detector was used. This method allows for a simple and fast sample preparation, which facilitates the analysis of large amounts of samples.
DOCUMENT
Semen traces are considered important pieces of evidence in forensic investigations, especially those involving sexsual offenses. Recently, our research group developed a fluorescence-based technique to accurately determine the age of semen traces. However, the specific compounds resonsible for the fluoresescent behaviour of ageing semens remain unknown. As such, in this exploratory study, the aim is to identify the components associated with the fluorescent behavior of ageing semen traces. In this investigation semen stains and various biofluorophores commonly found in body fluids were left to aged for 0, 2, 4, 7, 14 and 21 days. Subsequently, thin-layer chromatography (TLC) and ultra-performance liquid chromatography (UPLC) mass spectrometry were performed to identify the biofluorophores present in semen. Several contributors to the autofluorescence could be identified in semen stain, these include tryptophan, kynurenine, kynurenic acid, and norharman. The study sheds light on the.
DOCUMENT