Mathematics teacher educators in primary teacher education need expert knowledge and skills in teaching in primary school, in subject matter and research. Most starting mathematics teacher educators possess only part of this knowledge and skills. A professional development trajectory for this group is developed and tested, where a design based research is used to evaluate the design. This paper describes the professional development trajectory and design. We conclude that the professional development design should focus on mathematical knowledge for teaching, should refer to both teacher education and primary education, should offer opportunities for cooperative learning, and need to use practice based research as a developmental tool.
DOCUMENT
In this chapter, we discuss the education of secondary school mathematics teachers in the Netherlands. There are different routes for qualifying as a secondary school mathematics teacher. These routes target different student teacher populations, ranging from those who have just graduated from high school to those who have already pursued a career outside education or working teachers who want to qualify for teaching in higher grades. After discussing the complex structure this leads to, we focus on the aspects that these different routes have in common. We point out typical characteristics of Dutch school mathematics and discuss the aims and challenges in teacher education that result from this. We give examples of different approaches used in Dutch teacher education, which we link to a particular model for designing vocational and professional learning environments.We end the chapter with a reflection on the current situation.
LINK
In most teacher training programs for Dutch mathematics teachers, history of mathematics is a required part of the curriculum. The courses provide historical background knowledge of certain mathematical developments to the students. This knowledge could also affect prospective teachers’ views on the nature of mathematics and the pedagogical choices they make for their classrooms. These effects have been examined in a small qualitative research project with two different groups of students from a teacher-training program in Amsterdam. The results are discussed in this paper and can be useful in describing and evaluating the relation between knowledge of history of mathematics and classroom activities.
DOCUMENT
This paper analyses the impact of two structural context factors on mathematics teacher students. First, the Netherlands is coping with a massive mathematics teacher shortage. Second, the Dutch knowledge-economy feeds the private tutoring sector. The impact on young teacher-students is tremendous; they start working as a teacher too early. Besides successful studying, broader professionalization and quality of mathematics education are in jeopardy. A quick-fix for mathematics education might do more damage than foreseen.
DOCUMENT
This paper is a summary paper of the Thematic Working Group (TWG) on Adult Mathematics Education (AME). As the only thematic working group that focuses on adults’ lived experiences of mathematics, the research makes an important contribution to the field of Mathematics Education. The main themes in this group identify that adult numerical behaviour goes beyond the mathematics skills, knowledge, and procedures taught in formal education It is multifaceted, requiring the use of higher order skills of analysis and judgement, applied within a broad array of life’s contexts, experienced through a range of emotions. The research in this group points to the need to raise the profile of research that shows the benefits to adults of learning mathematics but also the long term economic disbenefits in the neglect of teaching and teacher training for this group.
DOCUMENT
It is a challenge for mathematics teachers to provide activities for their students at a high level of cognitive demand. In this article, we explore the possibilities that history of mathematics has to offer to meet this challenge. History of mathematics can be applied in mathematics education in different ways. We offer a framework for describing the appearances of history of mathematics in curriculum materials. This framework consists of four formats that are entitled speck, stamp, snippet, and story. Characteristic properties are named for each format, in terms of size, content, location, and function. The formats are related to four ascending levels of cognitive demand. We describe how these formats, together with design principles that are also derived from the history of mathematics, can be used to raise the cognitive level of existing tasks and design new tasks. The combination of formats, cognitive demand levels, and design principles is called the 4S-model. Finally, we advocate that this 4S-model can play a role in mathematics teacher training to enable prospective teachers to reach higher cognitive levels in their mathematics classrooms.
DOCUMENT
Explicit language objectives are included in the Swedish national curriculum for mathematics. The curriculum states that students should be given opportunities to develop the ability to formulate problems, use and analyse mathematical concepts and relationships between concepts, show and follow mathematical reasoning, and use mathematical expressions in discussions. Teachers’ competence forms a crucial link to bring an intended curriculum to a curriculum in action. This article investigates a professional development program, ‘Language in Mathematics’, within a national program for mathematics teachers in Sweden that aims at implementing the national curriculum into practice. Two specific aspects are examined: the selection of theoretical notions on language and mathematics and the choice of activities to relate selected theory to practice. From this examination, research on teacher learning in connection to professional development is proposed, which can contribute to a better understanding of teachers’ interpretation of integrated approaches to language and mathematics across national contexts.
DOCUMENT
Nowadays, digital tools for mathematics education are sophisticated and widely available. These tools offer important opportunities, but also come with constraints. Some tools are hard to tailor by teachers, educational designers and researchers; their functionality has to be taken for granted. Other tools offer many possible educational applications, which require didactical choices. In both cases, one may experience a tension between a teacher’s didactical goals and the tool’s affordances. From the perspective of Realistic Mathematics Education (RME), this challenge concerns both guided reinvention and didactical phenomenology. In this chapter, this dialectic relationship will be addressed through the description of two particular cases of using digital tools in Dutch mathematics education: the introduction of the graphing calculator (GC), and the evolution of the online Digital Mathematics Environment (DME). From these two case descriptions, my conclusion is that students need to develop new techniques for using digital tools; techniques that interact with conceptual understanding. For teachers, it is important to be able to tailor the digital tool to their didactical intentions. From the perspective of RME, I conclude that its match with using digital technology is not self-evident. Guided reinvention may be challenged by the rigid character of the tools, and the phenomena that form the point of departure of the learning of mathematics may change in a technology-rich classroom.
LINK
The design and use of online materials for blended learning have been in the spotlight of educational development over the last decade. With respect to didactical courses, however, the potential of online and blended learning seems to be underexplored; little is known about its affordances for teacher education, and for domain specific didactical courses in particular. To investigate this potential, as well as the ways to organize the co-design of such learning units, we carried out a small and short-term research project in which teacher educators in the Netherlands engaged in a co-design process of developing and field-testing open online learning units for mathematics and science didactics. We focused on the features of the designed online learning units, on the organization of the co-design process, and on the experiences with the learning units in teacher education practice. A first conclusion was that it was most fruitful to design building blocks rather than ready-to-use courses, and that students should have play a role in the materials. With respect to the co-design process, intensive meetings of small design teams seemed an efficient approach. The experiences in the field tests revealed that the learning units were inspiring, but needed finalization, and educators needed time to prepare the incorporation in their existing educational practices. In the future, the resulting learning units will be maintained and extended, and are expected to contribute to a community of practice of mathematics and science educators.
DOCUMENT
Numeracy and mathematics education in vocational education is under pressure to keep up with the rapid changes in the workplace due to developments in workplace mathematics and the ubiquitous availability of technological tools. Vocational education is a large stream in education for 12- to 20-years-olds in the Netherlands and the numeracy and mathematics curriculum is on the brink of a reform. To assess what is known from research on numeracy in vocational education, we are in the process of conducting a systematic review of the international scientific literature of the past five years to get an overview of the recent developments and to answer research questions on the developments in vocational educational practices. The work is still in progress. We will present preliminary and global results. We see vocational education from the perspective of (young) adults learning mathematics.
LINK