As people age, physiological changes affect their thermal perception, sensitivity and regulation. The ability to respond effectively to temperature fluctuations is compromised with physiological ageing, upsetting the homeostatic balance of health in some. As a result, older people can become vulnerable at extremes of thermal conditions in their environment. With population ageing worldwide, it is an imperative that there is a better understanding of older people’s thermal needs and preferences so that their comfort and wellbeing in their living environment can be optimised and healthy ageing achieved. However, the complex changes affecting the physiological layers of the individual during the ageing process, although largely inevitable, cannot be considered linear. They can happen in different stages, speeds and intensities throughout the ageing process, resulting in an older population with a great level of heterogeneity and risk. Therefore, predicting older people’s thermal requirements in an accurate way requires an in-depth investigation of their individual intrinsic differences. This paper discusses an exploratory study that collected data from 71 participants, aged 65 or above, from 57 households in South Australia, over a period of 9 months in 2019. The paper includes a preliminary evaluation of the effects of individual intrinsic characteristics such as sex, body composition, frailty and other factors, on thermal comfort. It is expected that understanding older people’s thermal comfort from the lens of these diversity-causing parameters could lead to the development of individualised thermal comfort models that fully capture the heterogeneity observed and respond directly to older people’s needs in an effective way. (article starts at page 13)
MULTIFILE
Built environments are increasingly vulnerable to the impacts of climate change. Most European towns and cities have developed horizontally over time but are currently in the process of further densification. High-rise developments are being built within city boundaries at an unprecedented rate to accommodate a growing urban population. This densification contributes to the Urban Heat Island phenomenon and can increase the frequency and duration of extreme heat events locally. These new build-up areas, in common with historic city centres, consist mainly of solid surfaces often lacking open green urban spaces.The Intervention Catalogue is the third publication in a series produced by the Cool Towns project and has been designed as a resource for decision makers, urban planners, landscape architects, environmental consultants, elected members and anyone else considering how to mitigate heat stress and increase thermal comfort in urban areas. Technical information on the effectiveness of the full array of intervention types from trees to water features, shading sails to green walls, has been assessed for their heat stress mitigation properties, expressed in Physiological Equivalent Temperature (PET). The results shown in factsheets will help the process of making an informed, evidence based, choice so that the most appropriate intervention for the specific spatial situation can be identified.