BACKGROUNDLung protective ventilation is considered standard of care in the intensive care unit. However, modifying the ventilator settings can be challenging and is time consuming. Closed loop modes of ventilation are increasingly attractive for use in critically ill patients. With closed loop ventilation, settings that are typically managed by the ICU professionals are under control of the ventilator's algorithms.OBJECTIVESTo describe the effectiveness, safety, efficacy and workload with currently available closed loop ventilation modes.DESIGNSystematic review of randomised clinical trials.DATA SOURCESA comprehensive systematic search in PubMed, Embase and the Cochrane Central register of Controlled Trials search was performed in January 2023.ELIGIBILITY CRITERIARandomised clinical trials that compared closed loop ventilation with conventional ventilation modes and reported on effectiveness, safety, efficacy or workload.RESULTSThe search identified 51 studies that met the inclusion criteria. Closed loop ventilation, when compared with conventional ventilation, demonstrates enhanced management of crucial ventilator variables and parameters essential for lung protection across diverse patient cohorts. Adverse events were seldom reported. Several studies indicate potential improvements in patient outcomes with closed loop ventilation; however, it is worth noting that these studies might have been underpowered to conclusively demonstrate such benefits. Closed loop ventilation resulted in a reduction of various aspects associated with the workload of ICU professionals but there have been no studies that studied workload in sufficient detail.CONCLUSIONSClosed loop ventilation modes are at least as effective in choosing correct ventilator settings as ventilation performed by ICU professionals and have the potential to reduce the workload related to ventilation. Nevertheless, there is a lack of sufficient research to comprehensively assess the overall impact of these modes on patient outcomes, and on the workload of ICU staff.
MULTIFILE
Clima2025 paper
MULTIFILE
Introduction: Few data described practicalities of using mechanical insufflation-exsufflation (MI-E) for invasively ventilated ICU patients and evidence for benefit of their use is lacking.Aim and objective: To identify barriers and facilitators to use MI-E devices in invasively ventilated ICU patients, and to explore reasons for their use in various patient indications.Methods: Four focus group discussions; 3 national (Netherlands) and 1 with international representation, each with a purposeful interprofessional sample of a maximum 10 participants with experience in using MI-E in invasively ventilated ICU patients. We developed a semi-structured interview guide informed by the Theoretical Domain Framework. An observer was present in each session. Sessions were audio recorded and transcribed verbatim. Data were analysed using content analysis.Results: Barriers for MI-E use were lack of evidence and lack of expertise in MI-E, as well as lack of device availability within the ICU. Facilitators were experience with MI-E and perceived clinical improvement in patients with MI-E use. Common reasons to start using MI-E were difficult weaning, recurrent atelectasis and pneumonia. Main contraindications were, bullous emphysema, ARDS, high PEEP, hemodynamic instability, recent pneumothorax. There was substantial variability on used technical settings of MI-E in invasively ventilated patients.Conclusions: Key barriers and facilitators to MI-E were lack of evidence, available expertise and perceived clinical improvement. Variability on technical settings likely reflect lack of evidence. Future studies should focus on settings, safety and feasibility of MI-E in invasively ventilated patients before studies on effect can be conducted.
LINK