Background: INTELLiVENT-adaptive support ventilation (ASV) is an automated closed-loop mode of invasive ventilation for use in critically ill patients. INTELLiVENT-ASV automatically adjusts, without the intervention of the caregiver, ventilator settings to achieve the lowest work and force of breathing. Aims: The aim of this case series is to describe the specific adjustments of INTELLiVENT-ASV in patients with acute hypoxemic respiratory failure, who were intubated for invasive ventilation. Study design: We describe three patients with severe acute respiratory distress syndrome (ARDS) because of COVID-19 who received invasive ventilation in our intensive care unit (ICU) in the first year of the COVID-19 pandemic. Results: INTELLiVENT-ASV could be used successfully, but only after certain adjustments in the settings of the ventilator. Specifically, the high oxygen targets that are automatically chosen by INTELLiVENT-ASV when the lung condition ‘ARDS’ is ticked had to be lowered, and the titration ranges for positive end expiratory pressure (PEEP) and inspired oxygen fraction (FiO2) had to be narrowed. Conclusions: The challenges taught us how to adjust the ventilator settings so that INTELLiVENT-ASV could be used in successive COVID-19 ARDS patients, and we experienced the benefits of this closed-loop ventilation in clinical practice. Relevance to clinical practice: INTELLiVENT-ASV is attractive to use in clinical practice. It is safe and effective in providing lung-protective ventilation. A closely observing user always remains needed. INTELLiVENT-ASV has a strong potential to reduce the workload associated with ventilation because of the automated adjustments.
DOCUMENT
IntroductionThe driving pressure (ΔP) has an independent association with outcome in patients with acute respiratory distress syndrome (ARDS). INTELLiVENT-Adaptive Support Ventilation (ASV) is a closed-loop mode of ventilation that targets the lowest work and force of breathing.AimTo compare transpulmonary and respiratory system ΔP between closed-loop ventilation and conventional pressure controlled ventilation in patients with moderate-to-severe ARDS.MethodsSingle-center randomized cross-over clinical trial in patients in the early phase of ARDS. Patients were randomly assigned to start with a 4-h period of closed-loop ventilation or conventional ventilation, after which the alternate ventilation mode was selected. The primary outcome was the transpulmonary ΔP; secondary outcomes included respiratory system ΔP, and other key parameters of ventilation.ResultsThirteen patients were included, and all had fully analyzable data sets. Compared to conventional ventilation, with closed-loop ventilation the median transpulmonary ΔP with was lower (7.0 [5.0–10.0] vs. 10.0 [8.0–11.0] cmH2O, mean difference − 2.5 [95% CI − 2.6 to − 2.1] cmH2O; P = 0.0001). Inspiratory transpulmonary pressure and the respiratory rate were also lower. Tidal volume, however, was higher with closed-loop ventilation, but stayed below generally accepted safety cutoffs in the majority of patients.ConclusionsIn this small physiological study, when compared to conventional pressure controlled ventilation INTELLiVENT-ASV reduced the transpulmonary ΔP in patients in the early phase of moderate-to-severe ARDS. This closed-loop ventilation mode also led to a lower inspiratory transpulmonary pressure and a lower respiratory rate, thereby reducing the intensity of ventilation.Trial registration Clinicaltrials.gov, NCT03211494, July 7, 2017. https://clinicaltrials.gov/ct2/show/NCT03211494?term=airdrop&draw=2&rank=1.
MULTIFILE
Background: Ventilation management may differ between COVID–19 ARDS (COVID–ARDS) patients and patients with pre–COVID ARDS (CLASSIC–ARDS); it is uncertain whether associations of ventilation management with outcomes for CLASSIC–ARDS also exist in COVID–ARDS. Methods: Individual patient data analysis of COVID–ARDS and CLASSIC–ARDS patients in six observational studies of ventilation, four in the COVID–19 pandemic and two pre–pandemic. Descriptive statistics were used to compare epidemiology and ventilation characteristics. The primary endpoint were key ventilation parameters; other outcomes included mortality and ventilator–free days and alive (VFD–60) at day 60. Results: This analysis included 6702 COVID–ARDS patients and 1415 CLASSIC–ARDS patients. COVID–ARDS patients received lower median VT (6.6 [6.0 to 7.4] vs 7.3 [6.4 to 8.5] ml/kg PBW; p < 0.001) and higher median PEEP (12.0 [10.0 to 14.0] vs 8.0 [6.0 to 10.0] cm H2O; p < 0.001), at lower median ΔP (13.0 [10.0 to 15.0] vs 16.0 [IQR 12.0 to 20.0] cm H2O; p < 0.001) and higher median Crs (33.5 [26.6 to 42.1] vs 28.1 [21.6 to 38.4] mL/cm H2O; p < 0.001). Following multivariable adjustment, higher ΔP had an independent association with higher 60–day mortality and less VFD–60 in both groups. Higher PEEP had an association with less VFD–60, but only in COVID–ARDS patients. Conclusions: Our findings show important differences in key ventilation parameters and associations thereof with outcomes between COVID–ARDS and CLASSIC–ARDS. Trial registration: Clinicaltrials.gov (identifier NCT05650957), December 14, 2022.
DOCUMENT
Background: The coronavirus disease 2019 (COVID-19) pandemic is rapidly expanding across the world, with more than 100,000 new cases each day as of end-June 2020. Healthcare workers are struggling to provide the best care for COVID-19 patients. Approaches for invasive ventilation vary widely between and within countries and new insights are acquired rapidly. We aim to investigate invasive ventilation practices and outcome in COVID-19 patients in the Netherlands.Methods: PRoVENT-COVID ('study of PRactice of VENTilation in COVID-19') is an investigator-initiated national, multicenter observational study to be undertaken in intensive care units (ICUs) in The Netherlands. Consecutive COVID-19 patients aged 18 years or older, who are receiving invasive ventilation in the participating ICUs, are to be enrolled during a 10-week period, with a daily follow-up of 7 days. The primary outcome is ventilatory management (including tidal volume expressed as mL/kg predicted body weight and positive end-expiratory pressure expressed as cmH2O) during the first 3 days of ventilation. Secondary outcomes include other ventilatory variables, use of rescue therapies for refractory hypoxemia such as prone positioning and extracorporeal membrane oxygenation, use of sedatives, vasopressors and inotropes; daily cumulative fluid balances; acute kidney injury; ventilator-free days and alive at day 28 (VFD-28), duration of ICU and hospital stay, and ICU, hospital and 90-day mortality.Discussion: PRoVENT-COVID will be the largest observational study to date, with high density ventilatory data and major outcomes. There is urgent need for a better understanding of ventilation practices, and the effects of ventilator settings on outcomes in COVID-19 patients. The results of PRoVENT-COVID will be rapidly disseminated through electronic presentations, such as webinars and electronic conferences, and publications in international peer-reviewed journals. Access to source data will be made available through local, regional and national anonymized datasets on request, and after agreement of the PRoVENT-COVID steering committee.Trial Registration: PRoVENT-COVID is registered at clinicaltrials.gov (identifier NCT04346342).
DOCUMENT
The COVID–19 pandemic led to local oxygen shortages worldwide. To gain a better understanding of oxygen consumption with different respiratory supportive therapies, we conducted an international multicenter observational study to determine the precise amount of oxygen consumption with high-flow nasal oxygen (HFNO) and with mechanical ventilation. A retrospective observational study was conducted in three intensive care units (ICUs) in the Netherlands and Spain. Patients were classified as HFNO patients or ventilated patients, according to the mode of oxygen supplementation with which a patient started. The primary endpoint was actual oxygen consumption; secondary endpoints were hourly and total oxygen consumption during the first two full calendar days. Of 275 patients, 147 started with HFNO and 128 with mechanical ventilation. Actual oxygen use was 4.9-fold higher in patients who started with HFNO than in patients who started with ventilation (median 14.2 [8.4–18.4] versus 2.9 [1.8–4.1] L/minute; mean difference 5 11.3 [95% CI 11.0–11.6] L/minute; P, 0.01). Hourly and total oxygen consumption were 4.8-fold (P, 0.01) and 4.8-fold (P, 0.01) higher. Actual oxygen consumption, hourly oxygen consumption, and total oxygen consumption are substantially higher in patients that start with HFNO compared with patients that start with mechanical ventilation. This information may help hospitals and ICUs predicting oxygen needs during high-demand periods and could guide decisions regarding the source of distribution of medical oxygen.
MULTIFILE
IntroductionMechanical power of ventilation, a summary parameter reflecting the energy transferred from the ventilator to the respiratory system, has associations with outcomes. INTELLiVENT–Adaptive Support Ventilation is an automated ventilation mode that changes ventilator settings according to algorithms that target a low work–and force of breathing. The study aims to compare mechanical power between automated ventilation by means of INTELLiVENT–Adaptive Support Ventilation and conventional ventilation in critically ill patients.Materials and methodsInternational, multicenter, randomized crossover clinical trial in patients that were expected to need invasive ventilation > 24 hours. Patients were randomly assigned to start with a 3–hour period of automated ventilation or conventional ventilation after which the alternate ventilation mode was selected. The primary outcome was mechanical power in passive and active patients; secondary outcomes included key ventilator settings and ventilatory parameters that affect mechanical power.ResultsA total of 96 patients were randomized. Median mechanical power was not different between automated and conventional ventilation (15.8 [11.5–21.0] versus 16.1 [10.9–22.6] J/min; mean difference –0.44 (95%–CI –1.17 to 0.29) J/min; P = 0.24). Subgroup analyses showed that mechanical power was lower with automated ventilation in passive patients, 16.9 [12.5–22.1] versus 19.0 [14.1–25.0] J/min; mean difference –1.76 (95%–CI –2.47 to –10.34J/min; P < 0.01), and not in active patients (14.6 [11.0–20.3] vs 14.1 [10.1–21.3] J/min; mean difference 0.81 (95%–CI –2.13 to 0.49) J/min; P = 0.23).ConclusionsIn this cohort of unselected critically ill invasively ventilated patients, automated ventilation by means of INTELLiVENT–Adaptive Support Ventilation did not reduce mechanical power. A reduction in mechanical power was only seen in passive patients.Study registrationClinicaltrials.gov (study identifier NCT04827927), April 1, 2021URL of trial registry recordhttps://clinicaltrials.gov/study/NCT04827927?term=intellipower&rank=1
MULTIFILE
The primary aims of this study were (1) to evaluate whole-body mechanical efficiency (ME) in a large group of chronic obstructive pulmonary disease (COPD) patients with a wide range of degrees of illness and (2) to examine how ME in COPD is related to absolute work rate and indices of disease severity during exercise testing. A total of 569 patients (301 male patients; GOLD stage I: 28, GOLD stage II: 166, GOLD stage III: 265, and GOLD stage IV: 110) with chronic obstructive pulmonary disease (COPD) were included in the data analysis. Individual maximal workload (watt), peak minute ventilation ((Equation is included in full-text article.)E, L/min body temperature and pressure, saturated), and peak oxygen uptake ((Equation is included in full-text article.)O2, mL/min standard temperature and pressure, dry) were determined from a maximal incremental cycle ergometer test. Ventilatory and metabolic response parameters were collected during a constant work rate test at 75% of the individual maximal workload. From the exercise responses of the constant work rate test, the gross ME was calculated. The mean whole-body gross ME was 11.0 ± 3.5% at 75% peak power. The ME declined significantly (P < .001) with increasing severity of the disease when measured at the same relative power. Log-transformed absolute work rate (r = .87, P < .001) was the strongest independent predictor of gross ME. Body mass was the single other variable that contributed significantly to the linear regression model. Gross ME in COPD was largely predicted by the absolute work rate (r = .87; P < .001) while indices of the severity of the disease did not predict ME in COPD.
DOCUMENT
Mechanical insufflation-exsufflation (MI-E) is traditionally used in the neuromuscular population. There is growing interest of MI-E use in invasively ventilated critically ill adults. We aimed to map current evidence on MI-E use in invasively ventilated critically ill adults. Two authors independently searched electronic databases MEDLINE, Embase, and CINAHL via the Ovid platform; PROSPERO; Cochrane Library; ISI Web of Science; and International Clinical Trials Registry Platform between January 1990–April 2021. Inclusion criteria were (1) adult critically ill invasively ventilated subjects, (2) use of MI-E, (3) study design with original data, and (4) published from 1990 onward. Data were extracted by 2 authors independently using a bespoke extraction form. We used Mixed Methods Appraisal Tool to appraise risk of bias. Theoretical Domains Framework was used to interpret qualitative data. Of 3,090 citations identified, 28 citations were taken forward for data extraction. Main indications for MI-E use during invasive ventilation were presence of secretions and mucus plugging (13/28, 46%). Perceived contraindications related to use of high levels of positive pressure (18/28, 68%). Protocolized MI-E settings with a pressure of ±40 cm H2O were most commonly used, with detail on timing, flow, and frequency of prescription infrequently reported. Various outcomes were re-intubation rate, wet sputum weight, and pulmonary mechanics. Only 3 studies reported the occurrence of adverse events. From qualitative data, the main barrier to MI-E use in this subject group was lack of knowledge and skills. We concluded that there is little consistency in how MI-E is used and reported, and therefore, recommendations about best practices are not possible.
DOCUMENT
BACKGROUND:Endotracheal suctioning causes discomfort, is associated with adverse effects, and is resource-demanding. An artificial secretion removal method, known as an automated cough, has been developed, which applies rapid, automated deflation, and inflation of the endotracheal tube cuff during the inspiratory phase of mechanical ventilation. This method has been evaluated in the hands of researchers but not when used by attending nurses. The aim of this study was to explore the efficacy of the method over the course of patient management as part of routine care.METHODS:This prospective, longitudinal, interventional study recruited 28 subjects who were intubated and mechanically ventilated. For a maximum of 7 d and on clinical need for endotracheal suctioning, the automatic cough procedure was applied. The subjects were placed in a pressure-regulated ventilation mode with elevated inspiratory pressure, and automated cuff deflation and inflation were performed 3 times, with this repeated if deemed necessary. Success was determined by resolution of the clinical need for suctioning as determined by the attending nurse. Adverse effects were recorded.RESULTS:A total of 84 procedures were performed. In 54% of the subjects, the artificial cough procedure was successful on > 70% of occasions, with 56% of all procedures considered successful. Ninety percent of all the procedures were performed in subjects who were spontaneously breathing and on pressure-support ventilation with peak inspiratory pressures of 20 cm H2O. Rates of adverse events were similar to those seen in the application of endotracheal suctioning.CONCLUSIONS:This study solely evaluated the efficacy of an automated artificial cough procedure, which illustrated the potential for reducing the need for endotracheal suctioning when applied by attending nurses in routine care.
DOCUMENT
BACKGROUND: Critically ill patients receiving invasive ventilation are at risk of sputum retention. Mechanical insufflation-exsufflation (MI-E) is a technique used to mobilise sputum and optimise airway clearance. Recently, interest has increased in the use of mechanical insufflation-exsufflation for invasively ventilated critically ill adults, but evidence for the feasibility, safety and efficacy of this treatment is sparse. The aim of this scoping review is to map current and emerging evidence on the feasibility, safety and efficacy of MI-E for invasively ventilated adult patients with the aim of highlighting knowledge gaps and identifying areas for future research. Specific research questions aim to identify information informing indications and contraindications to the use of MI-E in the invasively ventilated adult, MI-E settings used, outcome measures reported within studies, adverse effects reported and perceived barriers and facilitators to using MI-E reported.METHODS: We will search electronic databases MEDLINE, EMBASE, CINAHL using the OVID platform, PROSPERO, The Cochrane Library, ISI Web of Science and the International Clinical Trials Registry Platform. Two authors will independently screen citations, extract data and evaluate risk of bias using the Mixed Methods Appraisal Tool. Studies included will present original data and describe MI-E in invasively ventilated adult patients from 1990 onwards. Our exclusion criteria are studies in a paediatric population, editorial pieces or letters and animal or bench studies. Search results will be presented in a PRISMA study flow diagram. Descriptive statistics will be used to summarise quantitative data. For qualitative data relating to barriers and facilitators, we will use content analysis and the Theoretical Domains Framework (TDF) as a conceptual framework. Additional tables and relevant figures will present data addressing our research questions.DISCUSSION: Our findings will enable us to map current and emerging evidence on the feasibility, safety and efficacy of MI-E for invasively ventilated critically ill adult patients. These data will provide description of how the technique is currently used, support healthcare professionals in their clinical decision making and highlight areas for future research in this important clinical area.
DOCUMENT