Nieuwe materialen zijn gemaakt door plastic van biologische oorsprong te mengen met textielafval. Dit nieuwe materiaal is recyclebaar en biologisch afbreekbaar. Het is CO2 neutraal, vermindert de afvalstroom en draagt niet bij aan de uitputting van de voorraad fossiele grondstoffen. De textielvezels versterken het plastic en verlagen de kostprijs. Door de unieke eigenschappen kunnen van het materiaal designproducten gemaakt worden die niet alleen duurzaam zijn, maar ook een geheel eigen uitstraling hebben.
In opdracht van het Groninger Instituut Archeologie van de Rijksuniversiteit Groningen en de Doggerland projectgroep is onderzoek gedaan naar de effectiviteit van de Reflectance Transformation Imaging (RTI) en fotogrammetrie. Deze twee technieken zijn toegepast op kaakfragmenten met gebitselementen uit het Mesolithicum en de Bronstijd om te onderzoeken of het mogelijk is om met deze technieken een verschil in dieet aan te tonen. Daarnaast is de Artec Spider 3D-scanner toegepast op de gebitselementen. Deze scans zijn gemaakt door externen, waarna de resultaten opgenomen zijn in het onderzoek. Uit het onderzoek is gebleken dat het vaststellen van specifieke verschillen van gebitsslijtage tussen jager-verzamelaars en vroege boeren niet mogelijk is op basis van de RTI-techniek en fotogrammetrie. Beide technieken leveren niet de gewenste resultaten. Zo maakt de RTI-techniek enkel een opname van bovenaf, waardoor de zijaanzichten van de gebitselementen niet onderzocht kunnen worden. De fotogrammetrische techniek is niet gedetailleerd genoeg. Zo vloeien verschillende gebitselementen in elkaar over en zijn sommige elementen niet scherp genoeg om met zekerheid vast te stellen of hier überhaupt slijtagesporen op zijn aangetroffen. Desondanks is het wel mogelijk geweest om de slijtagesporen in beeld te brengen met de Artec Spider 3D-scanner. Deze scanner maakt het mogelijk om de specifieke verschijnselen van gebitsslijtage op de gebitselementen uit het Mesolithicum en de Bronstijd in beeld te brengen.
MULTIFILE
Dit voorstel betreft een onderzoek naar de verschillen in zuiverheid tussen virgin kunststof en post-industrial en post-consumer kunststof-reststromen in relatie tot de inzet van deze materialen bij 3D printen. Thermoplastische kunststoffen zijn in theorie goed te recyclen en opnieuw te gebruiken, bijvoorbeeld in een 3D print proces. In de praktijk blijkt het echter een uitdaging om gerecycled filament te produceren dat geschikt is voor de huidige machine-eisen. De oorsprong van dit project ligt in de gedachte om niet het materiaal aan te passen aan de machine, maar de machine aan het materiaal en hierdoor het gebruik van kunststofrecyclaat in 3D-printen te vergroten. Alvorens dit te kunnen, is meer inzicht in de materiaaleigenschappen nodig. Het doel van dit project is dan ook om de verschillende samenstellingen van kunststof-reststromen in kaart te brengen en hoe dit zich vertaald in mechanische en esthetische kwaliteit ten opzichte van virgin materiaal en wat dit vraagt aan aanpassingen aan 3D printers om deze kunststof-reststromen te kunnen verwerken. Dit onderzoek is een eerste fase in een groter onderzoeksproject. Volgende fasen zullen zich toespitsen op het optimaliseren van productietechnieken voor het printen met gerecycled kunststof en het ontwikkelen van mogelijke toepassingen en bijbehorende circulaire business modellen. Aanleiding voor dit onderzoeksvoorstel is tweeledig. Enerzijds de ervaring van Cre8 dat 3D printen relatief veel kunststof restmateriaal oplevert in de vorm van mislukte prints, proefprints en prototypes met korte levensduur. Passend bij hun duurzame bedrijfsprofiel heeft Cre8 de behoefte om hun eigen reststroom en reststromen uit hun omgeving in te zetten in het productieproces. Anderzijds ziet Refilment zich geconfronteerd met de complexe samenhang tussen de samenstelling van kunststof-reststromen en zijn verwerkingsmogelijkheden (bijvoorbeeld extruder-diameter en verwerkingstemperatuur).
Nederland wil in 2050 een circulaire economie zijn. Een economie zonder afval, waarbij alles draait op herbruikbare grondstoffen. Het zuiniger en slimmer omgaan met grondstoffen is ook voor de textielbranche van belang. De meest gebruikte en bekende hernieuwbare plantaardige grondstof voor de textielindustrie is katoen. De huidige niet-circulaire productie en toepassingen van katoen hebben vergaande negatieve impact op mens en milieu. De gebruikersduur van kleding wordt steeds korter en afgedankte kleding wordt laagwaardig verwerkt om uiteindelijk alsnog te worden verbrand. Zowel het economische als duurzame verbeterpotentieel voor circulair textiel is dan ook enorm. De kwaliteit van katoen vermindert met iedere (mechanische) recyclingstap omdat de vezellengte steeds korter wordt. De uitdaging is om meermaals te recycling waarbij in iedere recyclestap waarde wordt behouden en gecreëerd. Als uiteindelijke stap wordt nagestreefd de grondstof veilig terug te laten keren naar de biosfeer als voedingsmiddel waarna een nieuwe cascade kan beginnen: een kringloop in de vorm van regeneratieve cascades. Om dit te realiseren moet de hele keten samenwerken in een transparant systeem waarbij stakeholders meervoudige waarde in balans ontwikkelen, zodat geen partij in de keten wordt benadeeld. Organisaties worstelen met deze veranderende rollen en zoeken nieuwe bedrijfsmodellen, waarin herstel en volhoudbaarheid boven oneindige groei en uitputting staan. In dit project werken Nederlandse bedrijven (met name MKB) uit de gehele textielketen samen met Indiase bedrijven om de werking van een katoencascade -een regeneratief, circulair systeem van katoenzaad tot worteldoek- te onderzoeken en op te tekenen. Een interdisciplinaire benadering is hierbij cruciaal. De nadruk ligt zowel op onderzoek naar de technische haalbaarheid van de katoenvezel als op de ontwikkeling van collaboratieve bedrijfsmodellen. De geformuleerde onderzoeksvraag luidt: Welke collaboratieve bedrijfsmodellen ontstaan tijdens het ontwerponderzoek die geschikt zijn voor meervoudige waardecreatie in een katoencascade en hoe kunnen die bijdragen aan de verdere ontwikkeling van regeneratieve cascadeprincipes?
In het project 'Circular Material Testing for 3DP' (CMT) willen partners HB3D en Bambooder samen met de Hogeschool van Amsterdam (HvA) de geschiktheid beoordelen van verschillende circulaire materialen voor 3D-printen (3DP) met industriële robots, om een verdere verduurzaming van deze technologie te ondersteunen. Verschillende materialen zullen worden onderzocht en vergeleken op hun optimale printomstandigheden. Er zal een beoordelingsprotocol worden ontwikkeld om de materialen te beoordelen. Dit protocol introduceert a) specifiek ontworpen 3D-objecten die kunnen helpen bij het demonstreren en vergelijken van printcapaciteiten; b) specifieke tests om de mechanische eigenschappen van het materiaal te bepalen en c) circulaire experimenten om de 3DP-levenscyclus van deze materiaalstromen te controleren (d.w.z. de mogelijkheid om opnieuw te printen met het materiaal van een oude print). Alle resultaten zullen op een uniforme en uitgebreide manier worden gepresenteerd om de norm te stellen voor toekomstige tests en om ontwerpers / producenten te ondersteunen bij het selecteren van materialen voor Robot 3DP-toepassingen. Onderzoek wordt uitgevoerd door de Digital Production Research Group van het Centre of Expertise Urban Technology, samen met bovengenoemde partners, die leveranciers zijn van biobased plastics (Bambooder) en Robot 3DP toepassen (HB3D). De ontwikkelde tests zullen worden toegepast op standaard, fossiel polymeermateriaal, en vervolgens op twee nieuwe, circulaire materialen voor 3DP, geleverd door Bambooder en HB3D (die circulaire printmaterialen van DSM gaat leveren). Het project werkt toe naar een standaard beoordelingsprotocol (inclusief circulariteit) dat de acceptatie van nieuwe materialen voor 3DP kan vergemakkelijken. Een dergelijk protocol biedt materiaaleigenaren nieuwe kansen om hun specifieke afvalstromen te upcyclen. CMT is een belangrijke en gewenste stap richting industrieel 3D-printen met circulaire materialen, dat bijdraagt aan de ontwikkeling van slimme industrie en circulaire economie, beide relevant voor de maatschappelijke uitdagingen zoals opgenomen in de nationale Kennis- en Innovatieagenda voor wetenschap en technologie.