Purpose: The aims of this study were to investigate how a variety of research methods is commonly employed to study technology and practitioner cognition. User-interface issues with infusion pumps were selected as a case because of its relevance to patient safety. Methods: Starting from a Cognitive Systems Engineering perspective, we developed an Impact Flow Diagram showing the relationship of computer technology, cognition, practitioner behavior, and system failure in the area of medical infusion devices. We subsequently conducted a systematic literature review on user-interface issues with infusion pumps, categorized the studies in terms of methods employed, and noted the usability problems found with particular methods. Next, we assigned usability problems and related methods to the levels in the Impact Flow Diagram. Results: Most study methods used to find user interface issues with infusion pumps focused on observable behavior rather than on how artifacts shape cognition and collaboration. A concerted and theorydriven application of these methods when testing infusion pumps is lacking in the literature. Detailed analysis of one case study provided an illustration of how to apply the Impact Flow Diagram, as well as how the scope of analysis may be broadened to include organizational and regulatory factors. Conclusion: Research methods to uncover use problems with technology may be used in many ways, with many different foci. We advocate the adoption of an Impact Flow Diagram perspective rather than merely focusing on usability issues in isolation. Truly advancing patient safety requires the systematic adoption of a systems perspective viewing people and technology as an ensemble, also in the design of medical device technology.
DOCUMENT
This study addresses the burgeoning global shortage of healthcare workers and the consequential overburdening of medical professionals, a challenge that is anticipated to intensify by 2030 [1]. It explores the adoption and perceptions of AI-powered mobile medical applications (MMAs) by physicians in the Netherlands, investigating whether doctors discuss or recommend these applications to patients and the frequency of their use in clinical practice. The research reveals a cautious but growing acceptance of MMAs among healthcare providers. Medical mobile applications, with a substantial part of IA-driven applications, are being recognized for their potential to alleviate workload. The findings suggest an emergent trust in AI-driven health technologies, underscored by recommendations from peers, yet tempered by concerns over data security and patient mental health, indicating a need for ongoing assessment and validation of these applications
DOCUMENT
Abstract Background: With the growing shortage of nurses, labor-saving technology has become more important. In health care practice, however, the fit with innovations is not easy. The aim of this study is to analyze the development of a mobile input device for electronic medical records (MEMR), a potentially labor-saving application supported by nurses, that failed to meet the needs of nurses after development. Method: In a case study, we used an axiomatic design framework as an evaluation tool to visualize the mismatches between customer needs and the design parameters of the MEMR, and trace these mismatches back to (preliminary) decisions in the development process. We applied a mixed-method research design that consisted of analyzing of 118 external and internal files and working documents, 29 interviews and shorter inquiries, a user test, and an observation of use. By factoring and grouping the findings, we analyzed the relevant categories of mismatches. Results: The involvement of nurses during the development was extensive, but not all feedback was, or could not be, used effectively to improve the MEMR. The mismatches with the most impact were found to be: (1) suboptimal supportive technology, (2) limited functionality of the app and input device, and (3) disruption of nurses’ workflow. Most mismatches were known by the IT department when the MEMR was offered to the units as a product. Development of the MEMR came to a halt because of limited use. Conclusion: Choices for design parameters, made during the development of labor-saving technology for nurses, may conflict with the customer needs of nurses. Even though the causes of mismatches were mentioned by the IT department, the nurse managers acquired the MEMR based on the idea behind the app. The effects of the chosen design parameters should not only be compared to the customer needs, but also be assessed with nurses and nurse managers for the expected effect on the workflow.
LINK