Introduction: The social distancing restrictions due to the COVID-19 pandemic have changed students’ learning environment and limited their social interactions. Therefore, the objective of this study was to investigate the influence of the social distancing restrictions on students’ social networks, wellbeing, and academic performance. Methods: We performed a questionnaire study in which 102 students participated before and 167 students during the pandemic. They completed an online questionnaire about how they formed their five peer social networks (study-related support, collaboration, friendship, share information, and learn-from) out-of-class. We performed social network analysis to compare the sizes, structures, and compositions of students’ five social networks before and during the pandemic, between first- and second-year students, and between international and domestic students. Additionally, we performed Kruskal–Wallis H test to compare students’ academic performance before and during the pandemic. We performed thematic analysis to answers for two open-end questions in the online questionnaire to explore what difficulties students encountered during the COVID-19 pandemic and what support they needed. Results: The results showed that the size of students’ social networks during the pandemic was significantly smaller than before the pandemic. Besides, the formation of social networks differed between first- and second-year students, and between domestic and international students. However, academic performance did not decline during the COVID-19 pandemic. Furthermore, we identified three key areas in which students experienced difficulties and needed support by thematic analysis: social connections and interactions, learning and studying, and physical and mental wellbeing. Conclusion: When institutions implement learning with social distancing, such as online learning, they need to consider changes in students’ social networks and provide appropriate support.
LINK
Aims: Prescribing errors among junior doctors are common in clinical practice because many lack prescribing competence after graduation. This is in part due to inadequate education in clinical pharmacology and therapeutics (CP&T) in the undergraduate medical curriculum. To support CP&T education, it is important to determine which drugs medical undergraduates should be able to prescribe safely and effectively without direct supervision by the time they graduate. Currently, there is no such list with broad-based consensus. Therefore, the aim was to reach consensus on a list of essential drugs for undergraduate medical education in the Netherlands. Methods: A two-round modified Delphi study was conducted among pharmacists, medical specialists, junior doctors and pharmacotherapy teachers from all eight Dutch academic hospitals. Participants were asked to indicate whether it was essential that medical graduates could prescribe specific drugs included on a preliminary list. Drugs for which ≥80% of all respondents agreed or strongly agreed were included in the final list. Results: In all, 42 (65%) participants completed the two Delphi rounds. A total of 132 drugs (39%) from the preliminary list and two (3%) newly proposed drugs were included. Conclusions: This is the first Delphi consensus study to identify the drugs that Dutch junior doctors should be able to prescribe safely and effectively without direct supervision. This list can be used to harmonize and support the teaching and assessment of CP&T. Moreover, this study shows that a Delphi method is suitable to reach consensus on such a list, and could be used for a European list.
MULTIFILE
Rational prescribing is essential for the quality of health care. However, many final-year medical students and junior doctors lack prescribing competence to perform this task. The availability of a list of medicines that a junior doctor working in Europe should be able to independently prescribe safely and effectively without supervision could support and harmonize teaching and training in clinical pharmacology and therapeutics (CPT) in Europe. Therefore, our aim was to achieve consensus on such a list of medicines that are widely accessible in Europe. For this, we used a modified Delphi study method consisting of three parts. In part one, we created an initial list based on a literature search. In part two, a group of 64 coordinators in CPT education, selected via the Network of Teachers in Pharmacotherapy of the European Association for Clinical Pharmacology and Therapeutics, evaluated the accessibility of each medicine in his or her country, and provided a diverse group of experts willing to participate in the Delphi part. In part three, 463 experts from 24 European countries were invited to participate in a 2-round Delphi study. In total, 187 experts (40%) from 24 countries completed both rounds and evaluated 416 medicines, 98 of which were included in the final list. The top three Anatomical Therapeutic Chemical code groups were (1) cardiovascular system (n = 23), (2) anti-infective (n = 21), and (3) musculoskeletal system (n = 11). This European List of Key Medicines for Medical Education could be a starting point for country-specific lists and could be used for the training and assessment of CPT.
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
Studenten in het beroepsonderwijs leren op de werkplek om een goede beroepsuitoefenaar te worden. Beoordeling van het werkplekleren gebeurt vaak op de werkplek en door de werkplek. Dit promotieonderzoek wil in kaart brengen hoe werkplekopleiders de student beoordelen.
An important line of research within the Center of Expertise HAN BioCentre is the development of the nematode Caenorhabditis elegans as an animal testing replacement organism. In the context of this, us and our partners in the research line Elegant! (project number. 2014-01-07PRO) developed reliable test protocols, data analysis strategies and new technology, to determine the expected effects of exposure to specific substances using C. elegans. Two types of effects to be investigated were envisaged, namely: i) testing of possible toxicity of substances to humans; and ii) testing for potential health promotion of substances for humans. An important deliverable was to show that the observed effects in the nematode can indeed be translated into effects in humans. With regard to this aspect, partner Preventimed has conducted research in obesity patients during the past year into the effect of a specific cherry extract that was selected as promising on the basis of the study with C. elegans. This research is currently being completed and a scientific publication will have to be written. The Top Up grant is intended to support the publication of the findings from Elegant! and also to help design experimental protocols that enable students to become acquainted with alternative medical testing systems to reduce the use of laboratory animals during laboratory training.