Maintaining mental health can be quite challenging, especially when exposed to stressful situations. In many cases, mental health problems are recognized too late to effectively intervene and prevent adverse outcomes. Recent advances in the availability and reliability of wearable technologies offer opportunities for continuously monitoring mental states, which may be used to improve a person’s mental health. Previous studies attempting to detect and predict mental states with different modalities have shown only small to moderate effect sizes. This limited success may be due to the large variability between individuals regarding e.g., ways of coping with stress or behavioral patterns associated with positive or negative feelings. A study was set up for the detection of mental states based on longitudinal wearable and contextual sensing, targeted at investigating between-subjects variations in terms of predictors of mental states and variations in how predictors relate to mental states. At the end of March 2022, 16 PhD candidates from the Netherlands started to participate in the study. Over nine months, we collected data in terms of their daily mental states (valence and arousal), continuous physiological data (Oura ring) and smartphone data (AWARE framework including GPS and smartphone usage). From the raw data, we aggregated daily values for each participant in terms of sleep, physical activity, mental states, phone usage and GPS movement. First results (six months into the study at the time of writing) indicate that almost all participants show a large variability in ratings of daily mental states, which is a prerequisite for predictive modeling. Direction, strength and standard deviations of Spearman correlations between valence, arousal and the different variables suggest that several predictors of valence and arousal are more subject dependent than others. In future analyses, we will test and compare different versions of predictive modeling to highlight the potential of wearable technologies for mental state monitoring and the personalized prediction of the development of mental problems.
DOCUMENT
Background Running-related injuries (RRIs) can be considered the primary enemy of runners. Most literature on injury prediction and prevention overlooks the mental aspects of overtraining and under-recovery, despite their potential role in injury prediction and prevention. Consequently, knowledge on the role of mental aspects in RRIs is lacking. Objective To investigate mental aspects of overtraining and under-recovery by means of an online injury prevention programme. Methods and analysis The ‘Take a Mental Break!’ study is a randomised controlled trial with a 12 month follow-up. After completing a web-based baseline survey, half and full marathon runners were randomly assigned to the intervention group or the control group. Participants of the intervention group obtained access to an online injury prevention programme, consisting of a running-related smartphone application. This app provided the participants of the intervention group with information on how to prevent overtraining and RRIs with special attention to mental aspects. The primary outcome measure is any self-reported RRI over the past 12 months. Secondary outcome measures include vigour, fatigue, sleep and perceived running performance. Regression analysis will be conducted to investigate whether the injury prevention programme has led to a lower prevalence of RRIs, better health and improved perceived running performance. Ethics and dissemination The Medical Ethics Committee of the University Medical Center Utrecht, the Netherlands, has exempted the current study from ethical approval (reference number: NL64342.041.17). Results of the study will be communicated through scientific articles in peer-reviewed journals, scientific reports and presentations on scientific conferences.
DOCUMENT
Accessible Summary What is known on the subject? • Mentalizing is the capacity to understand both one‘s own and other people‘s behaviour in terms of mental states, such as, for example, desires, feelings and beliefs. • The mentalizing capacities of healthcare professionals help to establish effective therapeutic relationships and, in turn, lead to better patient outcomes. What this paper adds to existing knowledge? • The personal factors positively associated with the mentalizing capacities of healthcare professionals are being female, greater work experience and having a more secure attachment style. Psychosocial factors are having personal experience with psychotherapy, burnout, and in the case of female students, being able to identify with the female psychotherapist role model during training. There is limited evidence that training programmes can improve mentalizing capacities. • Although the mentalization field is gaining importance and research is expanding, the implications for mental health nursing have not been previously reviewed. Mental health nurses are underrepresented in research on the mentalizing capacities of healthcare professionals. This is significant given that mental health nurses work closest to patients and thus are more often confronted with patients‘ behaviour compared to other health care professionals, and constitute a large part of the workforce in mental healthcare for patients with mental illness. What are the implications for practice? • Given the importance of mentalizing capacity of both the patient and the nurse for a constructive working relationship, it is important that mental health nurses are trained in the basic principles of mentalization. Mental health nurses should be able to recognize situations where patients‘ lack of ability to mentalize creates difficulties in the interaction. They should also be able to recognize their own difficulties with mentalizing and be sensitive to the communicative implications this may have.
MULTIFILE
The increasing amount of electronic waste (e-waste) urgently requires the use of innovative solutions within the circular economy models in this industry. Sorting of e-waste in a proper manner are essential for the recovery of valuable materials and minimizing environmental problems. The conventional e-waste sorting models are time-consuming processes, which involve laborious manual classification of complex and diverse electronic components. Moreover, the sector is lacking in skilled labor, thus making automation in sorting procedures is an urgent necessity. The project “AdapSort: Adaptive AI for Sorting E-Waste” aims to develop an adaptable AI-based system for optimal and efficient e-waste sorting. The project combines deep learning object detection algorithms with open-world vision-language models to enable adaptive AI models that incorporate operator feedback as part of a continuous learning process. The project initiates with problem analysis, including use case definition, requirement specification, and collection of labeled image data. AI models will be trained and deployed on edge devices for real-time sorting and scalability. Then, the feasibility of developing adaptive AI models that capture the state-of-the-art open-world vision-language models will be investigated. The human-in-the-loop learning is an important feature of this phase, wherein the user is enabled to provide ongoing feedback about how to refine the model further. An interface will be constructed to enable human intervention to facilitate real-time improvement of classification accuracy and sorting of different items. Finally, the project will deliver a proof of concept for the AI-based sorter, validated through selected use cases in collaboration with industrial partners. By integrating AI with human feedback, this project aims to facilitate e-waste management and serve as a foundation for larger projects.
Drones have been verified as the camera of 2024 due to the enormous exponential growth in terms of the relevant technologies and applications such as smart agriculture, transportation, inspection, logistics, surveillance and interaction. Therefore, the commercial solutions to deploy drones in different working places have become a crucial demand for companies. Warehouses are one of the most promising industrial domains to utilize drones to automate different operations such as inventory scanning, goods transportation to the delivery lines, area monitoring on demand and so on. On the other hands, deploying drones (or even mobile robots) in such challenging environment needs to enable accurate state estimation in terms of position and orientation to allow autonomous navigation. This is because GPS signals are not available in warehouses due to the obstruction by the closed-sky areas and the signal deflection by structures. Vision-based positioning systems are the most promising techniques to achieve reliable position estimation in indoor environments. This is because of using low-cost sensors (cameras), the utilization of dense environmental features and the possibilities to operate in indoor/outdoor areas. Therefore, this proposal aims to address a crucial question for industrial applications with our industrial partners to explore limitations and develop solutions towards robust state estimation of drones in challenging environments such as warehouses and greenhouses. The results of this project will be used as the baseline to develop other navigation technologies towards full autonomous deployment of drones such as mapping, localization, docking and maneuvering to safely deploy drones in GPS-denied areas.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.