From the article: Though organizations are increasingly aware that the huge amounts of digital data that are being generated, both inside and outside the organization, offer many opportunities for service innovation, realizing the promise of big data is often not straightforward. Organizations are faced with many challenges, such as regulatory requirements, data collection issues, data analysis issues, and even ideation. In practice, many approaches can be used to develop new datadriven services. In this paper we present a first step in defining a process for assembling data-driven service development methods and techniques that are tuned to the context in which the service is developed. Our approach is based on the situational method engineering approach, tuning it to the context of datadriven service development. Published in: Reinhartz-Berger I., Zdravkovic J., Gulden J., Schmidt R. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS 2019, EMMSAD 2019. Lecture Notes in Business Information Processing, vol 352. Springer. The final authenticated version of this paper is available online at https://doi.org/10.1007/978-3-030-20618-5_11.
MULTIFILE
Live programming is a style of development characterized by incremental change and immediate feedback. Instead of long edit-compile cycles, developers modify a running program by changing its source code, receiving immediate feedback as it instantly adapts in response. In this paper, we propose an approach to bridge the gap between running programs and textual domain-specific languages (DSLs). The first step of our approach consists of applying a novel model differencing algorithm, tmdiff, to the textual DSL code. By leveraging ordinary text differencing and origin tracking, tmdiff produces deltas defined in terms of the metamodel of a language. In the second step of our approach, the model deltas are applied at run time to update a running system, without having to restart it. Since the model deltas are derived from the static source code of the program, they are unaware of any run-time state maintained during model execution. We therefore propose a generic, dynamic patch architecture, rmpatch, which can be customized to cater for domain-specific state migration. We illustrate rmpatch in a case study of a live programming environment for a simple DSL implemented in Rascal for simultaneously defining and executing state machines.
DOCUMENT
Author Supplied: In the last decades, architecture has emerged as a discipline in the domain of Information Technology (IT). A well-accepted definition of architecture is from ISO/IEC 42010: "The fundamental organization of a system, embodied in its components, their relationships to each other and the environment, and the principles governing its design and evolution." Currently, many levels and types of architecture in the domain of IT have been defined. We have scoped our work to two types of architecture: enterprise architecture and software architecture. IT architecture work is demanding and challenging and includes, inter alia, identifying architectural significant requirements (functional and non-functional), designing and selecting solutions for these requirements, and ensuring that the solutions are implemented according to the architectural design. To reflect on the quality of architecture work, we have taken ISO/IEC 8402 as a starting point. It defines quality as "the totality of characteristics of an entity that bear on its ability to satisfy stated requirements". We consider architecture work to be of high quality, when it is effective; when it answers stated requirements. Although IT Architecture has been introduced in many organizations, the elaboration does not always proceed without problems. In the domain of enterprise architecture, most practices are still in the early stages of maturity with, for example, low scores on the focus areas ‘Development of architecture’ and ‘Monitoring’ (of the implementation activities). In the domain of software architecture, problems of the same kind are observed. For instance, architecture designs are frequently poor and incomplete, while architecture compliance checking is performed in practice on a limited scale only. With our work, we intend to contribute to the advancement of architecture in the domain of IT and the effectiveness of architecture work by means of the development and improvement of supporting instruments and tools. In line with this intention, the main research question of this thesis is: How can the effectiveness of IT architecture work be evaluated and improved?
DOCUMENT