In the production of fermented foods, microbes play an important role. Optimization of fermentation processes or starter culture production traditionally was a trial-and-error approach inspired by expert knowledge of the fermentation process. Current developments in high-throughput 'omics' technologies allow developing more rational approaches to improve fermentation processes both from the food functionality as well as from the food safety perspective. Here, the authors thematically review typical bioinformatics techniques and approaches to improve various aspects of the microbial production of fermented food products and food safety.
DOCUMENT
Growth conditions have been frequently studied in optimizing polyhydroxybutyrate (PHB) production, while few studies were performed to unravel the dynamic mixed microbial consortia (MMCs) in the process. In this study, the relationship between growth conditions (C/N ratios and pH) and the corresponding key-microbes were identified and monitored during PHB accumulation. The highest PHB level (70 wt% of dry cell mass) was obtained at pH 9, C/N 40, and acetic acid 10 g/L. Linking the dominant genera with the highest point of PHB accumulation, Thauera was the most prevalent species in all MMCs of pH 9, except when a C/N ratio of 1 was applied. Notably, dominant bacteria shifted at pH 7 (C/N 10) from Thauera (0 h) to Paracoccus, and subsequently to Alcaligenes following the process of PHB accumulation and consumption. Further understanding of the relationship between the structure of the microbial community and the performance will be beneficial for regulating and obtaining high PHB accumulation within an MMC. Our study illustrates the impact of C/N ratios and pH on microbial prevalence and PHB production levels using a mixed microbial starter culture. This knowledge will broaden industrial perspectives for regulating high PHB production and timely harvesting.
LINK
Insider ethnographic analysis is used to analyze change processes in an engineering department. Distributed leadership theory is used as conceptual framework.
DOCUMENT
In the field of ‘renewable energy resources’ formation of biogas is an important option. Biogas can be produced from biomass in a multistep process called anaerobic digestion (AD) and is usually performed in large digesters. Anaerobic digestion of biomass is mediated by various groups of microorganisms, which live in complex community structures. However, there is still limited knowledge on the relationships between the type of biomass and operational process parameters. This relates to the changes within the microbial community structure and the resulting overall biogas production efficiency. Opening this microbial black box could lead to an better understanding of on-going microbial processes, resulting in higher biogas yields and overall process efficiencies.
DOCUMENT
High-pressure anaerobic digestion is an appealing concept since it can upgrade biogas directly within the reactor. However, the decline of pH caused by the dissolution of CO2 is the main barrier that prevents a good operating high-pressure anaerobic digestion process. Therefore, in this study, a high-pressure anaerobic digestion was studied to treat high alkalinity synthetic wastewater, which could not be treated in a normal-pressure anaerobic digester. In the high-pressure reactor, the pH value was 7.5 ~ 7.8, and the CH4 content reached 88% at 11 bar. Unlike its normal-pressure counterpart (2285 mg/L acetic acid), the high-pressure reactor ran steadily (without volatile fatty acids inhibition). Furthermore, the microbial community changed in the high-pressure reactor. Specifically, key microbial guilds (Syntrophus (11.2%), Methanosaeta concilii (50.9%), and Methanobrevibacter (26.8%)) were dominant in the high-pressure reactor at 11 bar, indicating their fundamental roles under high-pressure treating high alkalinity synthetic wastewater.
DOCUMENT
Polyhydroxyalkanoates (PHAs) form a highly promising class of bioplastics for the transition from fossil fuel-based plastics to bio-renewable and biodegradable plastics. Mixed microbial consortia (MMC) are known to be able to produce PHAs from organic waste streams. Knowledge of key-microbes and their characteristics in PHA-producing consortia is necessary for further process optimization and direction towards synthesis of specific types of PHAs. In this study, a PHA-producing mixed microbial consortium (MMC) from an industrial pilot plant was characterized and further enriched on acetate in a laboratory-scale selector with a working volume of 5 L. 16S-rDNA microbiological population analysis of both the industrial pilot plant and the 5 L selector revealed that the most dominant species within the population is Thauera aminoaromatica MZ1T, a Gram-negative beta-proteobacterium belonging to the order of the Rhodocyclales. The relative abundance of this Thauera species increased from 24 to 40% after two months of enrichment in the selector-system, indicating a competitive advantage, possibly due to the storage of a reserve material such as PHA. First experiments with T. aminoaromatica MZ1T showed multiple intracellular granules when grown in pure culture on a growth medium with a C:N ratio of 10:1 and acetate as a carbon source. Nuclear magnetic resonance (NMR) analyses upon extraction of PHA from the pure culture confirmed polyhydroxybutyrate production by T. aminoaromatica MZ1T.
LINK
Thermal disinfection is probably the oldest water treatment method ever used. Similarly to other disinfection processes, it targets the inactivation of pathogenic (micro)organisms present in water, wastewater and other media. In this work, a pilot-scale continuous-flow thermal disinfection system was investigated using highly contaminated hospital wastewater as influent without any pre-treatment step for turbidity removal. The results proved that the tested system can be used with influent turbidity as high as 100 NTU and still provide up to log 8 microbial inactivation. Further results have shown energy consumption comparable to other commercially available thermal disinfection systems and relatively low influence on the investigated physical–chemical parameters.
DOCUMENT
Mild heat pasteurization, high pressure processing (HP) and pulsed electric field (PEF) processing of freshly squeezed orange juice were comparatively evaluated examining their impact on microbial load and quality parameters immediately after processing and during two months of storage. Microbial counts for treated juices were reduced beyond detectable levels immediately after processing and up to 2 months of refrigerated storage. Quality parameters such as pH, dry matter content and brix were not significantly different when comparing juices immediately after treatment and were, for all treatments, constant during storage time. Quality parameters related to pectinmethylesterase (PME) inactivation, like cloud stability and viscosity, were dependent on the specific treatments that were applied. Mild heat pasteurization was found to result in the most stable orange juice. Results for HP are nearly comparable to PEF except on cloud degradation, where a lower degradation rate was found for HP. For PEF, residual enzyme activity was clearly responsible for changes in viscosity and cloud stability during storage. Industrial relevance: Development of mild processing technologies with a minimal impact on fruit juice can be considered as a true alternative of fresh fruit. The present work presents a fair comparison of mild heat treated, high pressure (HP) and pulsed electric field (PEF) processed orange juice as an alternative for thermal pasteurization. Orange juices were monitored during two months of storage.
DOCUMENT
This study evaluated the performance of anaerobic co-digestion of cow manure (CM) and sheep manure (SM) in both batch and continuous digesters at 37 °C. Synergistic effects of co-digesting CM and SM at varying volatile solids (VS) ratios (1:0, 0:1, 3:1, 1:1, 1:3) were observed in the batch experiment, with the most effective degradation of cellulose (56%) and hemicellulose (55%), and thus, the highest cumulative methane yield (210 mL/gVSadded) obtained at a CM:SM ratio of 1:3. Co-digesting CM and SM improved the hydrolysis, as evidenced by the cellulase brought by SM and the increases of cellulolytic bacteria Clostridium. Besides, co-digestion enhanced the acidogenesis and methanogenesis, reflected by the enrichment of syntrophic bacteria Candidatus Cloacimonas and hydrogenotrophic archaea Methanoculleus (Coenzyme-B sulfoethylthiotransferase). When testing continuous digestion, the methane yield increased from 146 mL/gVS/d (CM alone) to 179 mL/gVS/d (CM:SM at 1:1) at a constant organic loading rate (OLR) of 1g VS/L/d and a hydraulic retention time (HRT) of 25 days. Furthermore, the anaerobic digestion process was enhanced when the daily feed changed back to CM alone, reflected by the improved daily methane yield (159 mL/VS/d). These results provided insights into the improvement of methane production during the anaerobic digestion of animal manure.
LINK
In the field of ‘renewable energy resources’ formation of biogas Biomass and biogas: potentials, efficiencies and flexibility is an important option. Biogas can be produced from biomass in a multistep process called anaerobic digestion (AD) and is usually performed in large digesters. Anaerobic digestion of biomass is mediated by various groups of microorganisms, which live in complex community structures. However, there is still limited knowledge on the relationships between the type of biomass and operational process parameters. This relates to the changes within the microbial community structure and the resulting overall biogas production efficiency. Opening this microbial black box could lead to an better understanding of on-going microbial processes, resulting in higher biogas yields and overall process efficiencies.
DOCUMENT