Based on his personal experience, the author aims to examine some of the key competencies that he considers essential for facilitators of group activities in arts-based environmental education (AEE). In this, participants are encouraged to enhance their sensibility to the environment through artistic approaches. A case in point is a workshop called “making a little me”. Its participants sculpt – while keeping their eyes closed – a clay version of their own seated body in miniature. When guiding such a workshop, it is of critical importance, according to the author, to encourage the participants to suspend their judgments on the art works of others. The facilitator should make every effort to provide a safe environment by practicing “holding space”.
MULTIFILE
This article introduces Gilles Deleuze and Félix Guattari’s concepts of smooth and striated space and couples these with the realms of art and technology. In doing so, and by analysing a case study, the dynamic natures and complex mixtures of art and technology are discussed. As a result, a perspective through which art and technology work together to enable new experiences opens up. The case study consists of Anja Hertenberger’s work entitled InBetween — an ongoing performance project in which she examines the reactions of people to her wearing an item of clothing which features a miniature camera on the front and a screen at the back. The article concludes by arguing that although Hertenberger’s performance concerns mediation, it mainly brings about immediate experiences that can be regarded as ‘imaginings’ rather than imaginations.
MULTIFILE
CC-BY-NC-ND This paper was presented at the IADIS Multi Conference on Computer Science and Information Systems MCCSIS2020 There is an increasing interest in indoor occupation and guidance information for business and societal purposes. Scientific literature has paid attention to various ways of detecting occupation using different sensors as data source including various algorithms for estimating occupation rates from this data. Gaining meaningful insights from the data still faces challenges because the potential benefits are not well understood. This study presents a proof-of-concept of an indoor occupation information system, following the design science methodology. We review various types of sensor data that are typically available or easy-to-install in buildings such as offices, classrooms and meeting rooms. This study contributes to current research by incorporating business requirements taken from expert interviews and tackling one of the main barriers for business by designing an affordable system on a common existing infrastructure. We believe that occupation information systems call for further research, in particular also in the context of social distancing because of covid19.
MULTIFILE
Management policy for protected species is currently often based on literature reviews and expert judgement, even though it requires tailor-made species knowledge on a local level. While wildlife management should preferably be evidence based, tailor-made field data is seldom used in current practices, because it is hardly available, difficult to collect and expensive. Recent development of digital technology is changing the field of wildlife management with “more, better, faster and cheaper” ways of data collection. Especially automated collection of field data with different types of sensors is promising, whereas miniaturization and low cost mass-production increase availability and use of these sensors. For collection of field data about predator-prey interactions, there is a need to develop wireless sensor networks that automatically identify different species in a community, while they record their spatially explicit data and their behaviour. Therefore, we will put together a consortium of partners that will develop a EU LIFE programme proposal, with the focus to develop a sensor network necessary to automatically monitor multiple species (i.e., species communities) for species conservation management. The consortium will consist of Van Hall Larenstein, Sovon Dutch Centre for Field Ornithology, the Dutch Mammal Society, Sensing Clues and DIKW intelligence. It will bring together a strong mix of expert knowledge on applied species conservation and wildlife management, ecological field research, wildlife intelligence, and handling and analysis of big data. This project matches the Top sector High-tech Systems & Materials, and revolves around 4 distinct phases: selection of potential consortium partners, exploration of the problem, working towards a common action perspective and writing a EU LIFE programme proposal. We will use knowledge co-creation techniques to explore the first three project phases.
Wildlife crime is an important driver of biodiversity loss and disrupts the social and economic activities of local communities. During the last decade, poaching of charismatic megafauna, such as elephant and rhino, has increased strongly, driving these species to the brink of extinction. Early detection of poachers will strengthen the necessary law enforcement of park rangers in their battle against poaching. Internationally, innovative, high tech solutions are sought after to prevent poaching, such as wireless sensor networks where animals function as sensors. Movement of individuals of widely abundant, non-threatened wildlife species, for example, can be remotely monitored ‘real time’ using GPS-sensors. Deviations in movement of these species can be used to indicate the presence of poachers and prevent poaching. However, the discriminative power of the present movement sensor networks is limited. Recent advancements in biosensors led to the development of instruments that can remotely measure animal behaviour and physiology. These biosensors contribute to the sensitivity and specificity of such early warning system. Moreover, miniaturization and low cost production of sensors have increased the possibilities to measure multiple animals in a herd at the same time. Incorporating data about within-herd spatial position, group size and group composition will improve the successful detection of poachers. Our objective is to develop a wireless network of multiple sensors for sensing alarm responses of ungulate herds to prevent poaching of rhinos and elephants.