We tested the hypothesis that in human ageing a decreased intramuscular acylcarnitine status is associated with (pre-)frailty, reduced physical performance and altered mitochondrial function. Results showed that intramuscular total carnitine levels and acetylcarnitine levels were lower in (pre-)frail old females compared to fit old females and young females, whereas no differences were observed in males. The low intramuscular acetylcarnitine levels in females correlated with low physical performance, even after correction for muscle mass (%), and were accompanied with lowered expression of genes involved in mitochondrial energy production and functionality. We concluded that in (pre-)frail old females, intramuscular total carnitine levels and acetylcarnitine levels are decreased, and this decrease is associated with reduced physical performance and low expression of a wide range of genes critical for mitochondrial function. The results stress the importance of taking sex differences into account in ageing research.
MULTIFILE
Muscle fiber-type specific expression of UCP3-protein is reported here for the firts time, using immunofluorescence microscopy
DOCUMENT
This study tested the hypothesis that in human aging, a decreased intramuscular acylcarnitine status is associated with (pre-)frailty, reduced physical performance, and altered mitochondrial function. We used a cross-sectional study design with well-matched fit and (pre-)frail old males and females, using young males and females as healthy controls. Frailty was assessed according to the Fried criteria and physical performance was determined by 400 m walk test, short physical performance battery and handgrip strength. Muscle and plasma acylcarnitine status, and muscle mitochondrial gene expression was analyzed. Results showed that intramuscular total carnitine levels and short-chain acylcarnitine levels were lower in (pre-)frail old females compared to fit old females and young females, whereas no differences were observed in males. The low intramuscular short-chain acylcarnitine levels in females correlated with low physical performance, even after correction for muscle mass (%), and were accompanied with lowered expression of genes involved in mitochondrial energy production and functionality. It is, therefore, concluded that in (pre-)frail old females, intramuscular total carnitine levels and short-chain acylcarnitine levels are decreased, and this decrease is associated with reduced physical performance and low expression of a wide range of genes critical for mitochondrial function. The results stress the importance of taking sex differences into account in aging research.
LINK
Carnitine/choline acyltransferases play diverse roles in energy metabolism and neuronal signalling. Our knowledge of their evolutionary relationships, important for functional understanding, is incomplete. Therefore, we aimed to determine the evolutionary relationships of these eukaryotic transferases. We performed extensivephylogenetic and intron position analyses. We found that mammalian intramitochondrial CPT2 is most closely related to cytosolic yeast carnitine transferases (Sc-YAT1 and 2), whereas the other members of the family are related to intraorganellar yeast Sc-CAT2. Therefore, the cytosolically active CPT1 more closely resembles intramitochondrial ancestors than CPT2. The choline acetyltransferase is closely related to carnitine acetyltransferase and shows lower evolutionary rates than long chain acyltransferases. In the CPT1 family several duplications occurred during animal radiation, leading to the isoforms CPT1A, CPT1B and CPT1C. In addition, we found five CPT1-like genes in Caenorhabditis elegans that strongly group to the CPT1 family. The long branch leading to mammalian brain isoform CPT1C suggests that either strong positive or relaxed evolution has taken place on this node. The presented evolutionary delineation of carnitine/choline acyltransferases adds to current knowledge on their functions and provides tangible leads for further experimental research.
DOCUMENT
Lichamelijke zwakte is een belangrijk onderdeel van kwetsbaarheid en komt veel voor bij oudere volwassenen. Terwijl vrouwen een hogere prevalentie en een eerder begin van kwetsbaarheid kennen zijn sekseverschillen in de ontwikkeling van lichamelijke zwakte nauwelijks bestudeerd. Daarom hebben we in spieren de veranderingen onderzocht die onderscheid maken tussen fitte en zwakke ouderen voor elk geslacht afzonderlijk. Mannen (n = 28) en vrouwen (n = 26) van 75 jaar en ouder werden gegroepeerd op basis van hun fysieke prestatiecriteria. Er werd gebruik gemaakt van spierbiopten genomen uit de vastus lateralis-spier voor genexpressie- en histologisch onderzoek. Er werden paarsgewijze vergelijkingen gemaakt tussen de sterkste en de zwakste groepen voor elk geslacht afzonderlijk, en potentiële geslachts-specifieke effecten werden beoordeeld. Zwakke vrouwen toonden een hogere expressie van ontstekingsroutes, infiltratie van NOX2-immuuncellen, samen met een hogere VCAM1-expressie. Zwakke mannen werden gekenmerkt door een kleinere diameter van type 2 (snelle) spiervezels en lagere expressie van PRKN. Zwakte-geassocieerde genexpressie-veranderingen in de spieren waren verschillend van veroudering-geassocieerde genexpressie-veranderingen, wat erop wijst dat de pathofysiologie van fysieke zwakte niet noodzakelijkerwijs afhankelijk is van veroudering. We concluderen dat zwakte-geassocieerde veranderingen in de spieren sekse-specifiek zijn. Aanbevolen wordt om bij onderzoek naar kwetsbaarheid rekening te houden met sekseverschillen, omdat deze verschillen een grote impact kunnen hebben over de ontwikkeling van (farmaceutische) interventies tegen kwetsbaarheid.
MULTIFILE
Talloze studies tonen aan dat een fysiek actieve leefstijl bloeddruk, cholesterol en gewicht verlaagt, botten en spieren versterkt en het risico van hart- en vaatziekten, darmkanker en diabetes type II vermindert. Bewegen kan dus worden gezien als een medicijn wat voor iedereen toegankelijk is.
DOCUMENT
High consumption of carbohydrates is linked to metabolic syndrome, possibly via the endogenous formation of advanced glycated end-products. Many Dutch elementary school children have a carbohydrate intake of >130g/day, the estimated minimum requirement. In this observational study, 126 Dutch elementary school children (5-12y of age) from two schools differing in frequency of gym lessons (2 or 5 times a week) were included. In all participants, height, weight, waist circumference, autofluorescence of skin glycated end-products (AGE-score), sports activity and carbohydrate consumption were recorded once. Sports activities in leisure time differentiated participants in ‘sportsmen’ and ‘non-sportsmen’. Carbohydrate intake and AGE score were positively associated in non-sportsmen (p<0.003), but negatively in sportsmen (p<0.002). In sportsmen, but not in non-sportsmen (p>0.50), a positive association was found (p<0.002) between carbohydrate intake and subject age. The intake of total carbohydrate and carbohydrates from juices and soft drinks was lower (p<0.001) at the Wassenberg School relative to the Alexander School. Based on waist to height ratio, >95% of the children had normal fat mass. No correlations were found between waist to height ratio or BMI and carbohydrate intake. Waist to height ratio was positively associated with BMI (p<0.001)) and subject age (p<0.001). Of all principal parameters, AGE score is most affected by being sportsmen or not (p<0.001). This study indicates that an increased intake of carbohydrates can be counteracted by sufficient physical activity (>2.5 hours per week). This implies that skin autofluorescence is a fast and non-invasive method to screen children for life style.
DOCUMENT
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NMon ILCs and other components of the serosal immune systemare scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NMmay lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NMon the serosal immune system.
DOCUMENT
Understanding taste is key for optimizing the palatability of seaweeds and other non-animal-based foods rich in protein. The lingual papillae in the mouth hold taste buds with taste receptors for the five gustatory taste qualities. Each taste bud contains three distinct cell types, of which Type II cells carry various G protein-coupled receptors that can detect sweet, bitter, or umami tastants, while type III cells detect sour, and likely salty stimuli. Upon ligand binding, receptor-linked intracellular heterotrimeric G proteins initiate a cascade of downstream events which activate the afferent nerve fibers for taste perception in the brain. The taste of amino acids depends on the hydrophobicity, size, charge, isoelectric point, chirality of the alpha carbon, and the functional groups on their side chains. The principal umami ingredient monosodium l-glutamate, broadly known as MSG, loses umami taste upon acetylation, esterification, or methylation, but is able to form flat configurations that bind well to the umami taste receptor. Ribonucleotides such as guanosine monophosphate and inosine monophosphate strongly enhance umami taste when l-glutamate is present. Ribonucleotides bind to the outer section of the venus flytrap domain of the receptor dimer and stabilize the closed conformation. Concentrations of glutamate, aspartate, arginate, and other compounds in food products may enhance saltiness and overall flavor. Umami ingredients may help to reduce the consumption of salts and fats in the general population and increase food consumption in the elderly.
MULTIFILE
Study goal: This study was carried out to answer the following research question: which motivation do healthy volunteers have to participate in phase I clinical trials? - Methods: A literature search was done through Google Scholar and Academic Search Premier, followed by three interviews with volunteers who had recently concluded their participation in a (non-commercial) phase I trial. - Results: Our literature search revealed mainly commercial motives for volunteers to participate in phase I clinical trials. The interviews (with volunteers in a non-commercial trial) showed that other factors may also play a decisive role, such as: (1) wish to support the investigator (2) wish to contribute to science, (3) access to more/better health care (4) sociability: possibility to relax and to communicate with other participants (5) general curiosity. Precondition is that risks and burden are deemed acceptable. - Conclusions: financial remuneration appears to be the predominant motive to participate voluntarily in a clinical trial. Other reasons were also mentioned however, such as general curiosity, the drive to contribute to science and the willingness to help the investigator. In addition, social reasons were given such as possibility to relax and to meet other people. Potential subjects state that they adequately assess the (safety) risks of participating in a trial as part of their decision process.
DOCUMENT