This research paper looks at a selection of science-fiction films and its connection with the progression of the use of television, telephone and print media. It also analyzes statistical data obtained from a questionnaire conducted by the research group regarding the use of communication media.
Background: The transformation in global demography and the shortage of health care workers require innovation and efficiency in the field of health care. Digital technology can help improve the efficiency of health care. The Mercury Advance SMARTcare solution is an example of digital technology. The system is connected to a hybrid mattress and is able to detect patient movement, based on which the air pump either starts automatically or sends a notification to the app. Barriers to the adoption of the system are unknown, and it is unclear if the solution will be able to support health care workers in their work. Objective: This study aims to gain insight into health care workers’ expectations of factors that could either hamper or support the adoption of the Mercury Advance SMARTcare unit connected to a Mercury Advance mattress to help prevent patients from developing pressure injuries in hospitals and long-term care facilities. Methods: We conducted a generic qualitative study from February to December 2022. Interviews were conducted, and a focus group was established using an interview guide of health care workers from both the United Kingdom and the Netherlands. Thematic analysis was performed by 2 independent researchers. Results: A total of 14 participants took part in the study: 6 (43%) participants joined the focus group, and 8 (57%) participants took part in the individual interviews. We identified 13 factors based on four themes: (1) factors specifically related to SMARTresponse, (2) vision on innovation, (3) match with health care activities, and (4) materials and resources involved. Signaling function, SMARTresponse as prevention, patient category, representatives, and implementation strategy were identified as facilitators. Perception of patient repositioning, accessibility to pressure injury aids, and connectivity were identified as barriers. Conclusions: Several conditions must be met to enhance the adoption of the Mercury Advance SMARTcare solution, including the engagement of representatives during training and a reliable wireless network. The identified factors can be used to facilitate the implementation process. JMIR Nursing 2024;7:e47992
Abstract: Electronic and electrical waste (e-waste) is growing fast. The purpose of this study is to examine young consumers’ purchase intention of refurbished electronic devices (REDs) such as laptop, tablet, mobile phone and game console. From literature review the factors that influence young consumers’ purchase intention were identified as ‘environmental awareness’, ‘social acceptance’, ‘seller/brand reputation and availability’, and ‘affordability and value’. For each factor a few statements were developed and used as independent variables in a questionnaire. One statement was added about purchase intention as dependent variable. A Pearson correlation coefficient test us showed a clear positive correlation of ‘environmental awareness’ and ‘affordability and value’ with the intention to purchase REDs, but not for the other two factors. This analysis contributes to knowledge on young consumers’ perceptions of refurbished electronic devices and can inform the design of innovative value propositions and new business models for REDs that contribute to a circular economy
MULTIFILE
Today, embedded devices such as banking/transportation cards, car keys, and mobile phones use cryptographic techniques to protect personal information and communication. Such devices are increasingly becoming the targets of attacks trying to capture the underlying secret information, e.g., cryptographic keys. Attacks not targeting the cryptographic algorithm but its implementation are especially devastating and the best-known examples are so-called side-channel and fault injection attacks. Such attacks, often jointly coined as physical (implementation) attacks, are difficult to preclude and if the key (or other data) is recovered the device is useless. To mitigate such attacks, security evaluators use the same techniques as attackers and look for possible weaknesses in order to “fix” them before deployment. Unfortunately, the attackers’ resourcefulness on the one hand and usually a short amount of time the security evaluators have (and human errors factor) on the other hand, makes this not a fair race. Consequently, researchers are looking into possible ways of making security evaluations more reliable and faster. To that end, machine learning techniques showed to be a viable candidate although the challenge is far from solved. Our project aims at the development of automatic frameworks able to assess various potential side-channel and fault injection threats coming from diverse sources. Such systems will enable security evaluators, and above all companies producing chips for security applications, an option to find the potential weaknesses early and to assess the trade-off between making the product more secure versus making the product more implementation-friendly. To this end, we plan to use machine learning techniques coupled with novel techniques not explored before for side-channel and fault analysis. In addition, we will design new techniques specially tailored to improve the performance of this evaluation process. Our research fills the gap between what is known in academia on physical attacks and what is needed in the industry to prevent such attacks. In the end, once our frameworks become operational, they could be also a useful tool for mitigating other types of threats like ransomware or rootkits.
Structural colour (SC) is created by light interacting with regular nanostructures in angle-dependent ways resulting in vivid hues. This form of intense colouration offers commercial and industrial benefits over dyes and other pigments. Advantages include durability, efficient use of light, anti-fade properties and the potential to be created from low cost materials (e.g. cellulose fibres). SC is widely found in nature, examples include butterflies, squid, beetles, plants and even bacteria. Flavobacterium IR1 is a Gram-negative, gliding bacterium isolated from Rotterdam harbour. IR1 is able to rapidly self-assemble into a 2D photonic crystal (a form of SC) on hydrated surfaces. Colonies of IR1 are able to display intense, angle-dependent colours when illuminated with white light. The process of assembly from a disordered structure to intense hues, that reflect the ordering of the cells, is possible within 10-20 minutes. This bacterium can be stored long-term by freeze drying and then rapidly activated by hydration. We see these properties as suiting a cellular reporter system quite distinct from those on the market, SC is intended to be “the new Green Fluorescent Protein”. The ability to understand the genomics and genetics of SC is the unique selling point to be exploited in product development. We propose exploiting SC in IR1 to create microbial biosensors to detect, in the first instance, volatile compounds that are damaging to health and the environment over the long term. Examples include petroleum or plastic derivatives that cause cancer, birth defects and allergies, indicate explosives or other insidious hazards. Hoekmine, working with staff and students within the Hogeschool Utrecht and iLab, has developed the tools to do these tasks. We intend to create a freeze-dried disposable product (disposables) that, when rehydrated, allow IR1 strains to sense and report multiple hazardous vapours alerting industries and individuals to threats. The data, visible as brightly coloured patches of bacteria, will be captured and quantified by mobile phone creating a system that can be used in any location by any user without prior training. Access to advice, assay results and other information will be via a custom designed APP. This work will be performed in parallel with the creation of a business plan and market/IP investigation to prepare the ground for seed investment. The vision is to make a widely usable series of tests to allow robust environmental monitoring for all to improve the quality of life. In the future, this technology will be applied to other areas of diagnostics.
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.