When firefighting, the combination of exposition to high temperatures, high physical demands and wearing (heavy and insulated) personal protective equipment lead to increased risk of heat stress and exhaustion in firefighters. Heat stress can easily evolve into a life-threatening heat stroke. Once heat stress occurred, the chance of getting another heat stroke during deployment gets higher. Moreover, intermittent exposure to heat stress over several years, is a risk factor for heart diseases. Similarly, exhausted during a deployment, a firefighter needs more time to rehabilitate before he can safely be deployed again. Heat stress and exhaustion can lead to line-of-duty cardiovascular events. Therefore preventing heat stress and exhaustion during deployment is beneficial for health, functioning and employability of firefighters. Since currently available measurement of the core temperature, such as thermometer pill or neck patch thermometer, are not reliable or practical for firefighters, an alternative approach may be used, namely, estimation of the core temperature based on non-invasive observation of the heart rate. Exhaustion is estimated using the training impulse model based on the heart rate reserve. Our achievement is a MoSeS health monitor system (as a smartphone application) that can real time analyze the health status of a firefighter and predict exhaustion and heat stress during deployment. The system is cheap (only a heart rate sensor and a smartphone application is needed), easy to use (intuitive “traffic light” signal), and objective (the health status is determined based on measurements of the heart rate). The only restriction is that the developed model is strongly dependent on personal maximum and minimum heart rate which need to be established behforehand. Moses Health Monitoring system for Firefighters CC BY-NC-ND Conference Proceedings 17th international e-SOCIETY 2019 IADIS
MULTIFILE
In dit artikel (en keynote) schetst Nigten enkele grote veranderingen in onze samenleving en dagelijks leven en hoe dit samenhangt met onze kijk op techniek. Zij signaleert een verschuiving van techniek gestuurde innovatie naar innovatie door en met de eindgebruiker en hoe dit zich verhoudt tot technisch onderwijs. Vervolgens vergelijkt Nigten het procesverloop van grote sociale maatschappelijke innovaties met innovatie trajecten zoals we die kennen op het gebied van producten of diensten. Grote sociale innovatie trajecten vragen, net als radicale product- en diensteninnovaties, om andere organisatiemodellen dan het model waarin een product steeds verder verfijnd of verbeterd wordt. Om ons heen zien we dat de ROC opleidingen en de Hogescholen, moeite hebben met snel schakelen. De grote organisaties, de instituten hebben meestal niet de armslag om risico, een belangrijk aspect van innovatie, te nemen. Desondanks is het van groot belang dat de studenten toekomstbestendig onderwijs krijgen. Aan de hand van innovatie projecten van The Patching Zone, een transdisciplinair innovatie laboratorium in Rotterdam en het lectoraat PI aan de Hanze Hogeschool wordt er in dit artikel nader in gegaan op bruikbare innovatie modellen voor het technisch onderwijs. Hiervoor hanteert Nigten twee sleutelbegrippen: co-creatie en creativiteit en hoe deze die naadloos op elkaar aan kunnen sluiten.
MULTIFILE
From teh UU repository: "Background: Oral immunotherapy (OIT) is a promising therapeutic approach to treat food allergic patients. However, there are some concerns regarding its safety and long-term efficacy. The use of non-digestible oligosaccharides might improve OIT efficacy since they are known to directly modulate intestinal epithelial and immune cells in addition to acting as prebiotics. Aim: To investigate whether a diet supplemented with plant-derived fructo-oligosaccharides (FOS) supports the efficacy of OIT in a murine cow's milk allergy model and to elucidate the potential mechanisms involved. Methods: After oral sensitization to the cow's milk protein whey, female C3H/HeOuJ mice were fed either a control diet or a diet supplemented with FOS (1% w/w) and received OIT (10 mg whey) 5 days a week for 3 weeks by gavage. Intradermal (i.d.) and intragastric (i.g.) challenges were performed to measure acute allergic symptoms and mast cell degranulation. Blood and organs were collected to measure antibody levels and T cell and dendritic cell populations. Spleen-derived T cell fractions (whole spleen-and CD25-depleted) were transferred to naive recipient mice to confirm the involvement of regulatory T cells (Tregs) in allergy protection induced by OIT + FOS. Results: OIT + FOS decreased acute allergic symptoms and mast cell degranulation upon challenge and prevented the challenge-induced increase in whey-specific IgE as observed in sensitized mice. Early induction of Tregs in the mesenteric lymph nodes (MLN) of OIT + FOS mice coincided with reduced T cell responsiveness in splenocyte cultures. CD25 depletion in OIT + FOS-derived splenocyte suspensions prior to transfer abolished protection against signs of anaphylaxis in recipients. OIT + FOS increased serum galectin-9 levels. No differences in short-chain fatty acid (SCFA) levels in the cecum were observed between the treatment groups. Concisely, FOS supplementation significantly improved OIT in the acute allergic skin response, %Foxp3+ Tregs and %LAP+ Th3 cells in MLN, and serum galectin-9 levels. Conclusion: FOS supplementation improved the efficacy of OIT in cow's milk allergic mice. Increased levels of Tregs in the MLN and abolished protection against signs of anaphylaxis upon transfer of CD25-depleted cell fractions, suggest a role for Foxp3+ Tregs in the protective effect of OIT + FOS. "
LINK