Background Physical activity after bariatric surgery is associated with sustained weight loss and improved quality of life. Some bariatric patients engage insufficiently in physical activity. The aim of this study was to examine whether and to what extent both physical activity and exercise cognitions have changed at one and two years post-surgery, and whether exercise cognitions predict physical activity. Methods Forty-two bariatric patients (38 women, 4 men; mean age 38 ± 8 years, mean body mass index prior to surgery 47 ± 6 kg/m²), filled out self-report instruments to examine physical activity and exercise cognitions pre- and post surgery. Results Moderate to large healthy changes in physical activity and exercise cognitions were observed after surgery. Perceiving less exercise benefits and having less confidence in exercising before surgery predicted less physical activity two years after surgery. High fear of injury one year after surgery predicted less physical activity two years after surgery. Conclusion After bariatric surgery, favorable changes in physical activity and exercise cognitions are observed. Our results suggest that targeting exercise cognitions before and after surgery might be relevant to improve physical activity.
MULTIFILE
1. An earlier study by our group revealed that the viscosity of faeces from patients with Crohn's disease is significantly lower than that of healthy subjects. This is due to low concentrations of a high-molecular-mass carbohydrate, probably of bacterial origin. The cause of this phenomenon might be the impaired barrier function of the gut mucosa. Low viscosity may allow close contact of intestinal contents (bacterial products and toxins) with the intestinal wall. This could play a role in the maintenance of the disease.2. The first aim of this study was to investigate the high-molecular-mass carbohydrate fraction, responsible for viscosity, in detail. We also tried (in a pilot study) to raise the intestinal viscosity of patients with Crohn's disease with the undegradable food additive hydroxypropylcellulose (E463), in an attempt to alleviate clinical symptoms.3. The high-molecular-mass fraction (>300 kDa) responsible for faecal viscosity was sensitive to lysozyme and contained high levels of muramic acid. It was concluded that this material consisted mainly of peptidoglycan polysaccharides and was consequently of bacterial origin. The muramic acid in material from patients with Crohn's disease was 7.5 (1.5-13.9)%, which was less than in healthy subjects [11.4 (8.5-24.1)%; P=0.0004]. Furthermore, viscosity in material from patients with Crohn's disease was found to be half [14.9 (1.0-33.6) cP] of that found in healthy subjects [35.0 (2.7-90.7) cP; P=0.004].4.A daily dose of 1 g of hydroxypropylcellulose caused an increase in faecal viscosity in patients with Crohn's disease (from 1.4 to 2.3 cP) and in healthy subjects (from 4.9 to 7.5 cP). Faecal consistency improved in patients with Crohn's disease (from watery and loose to formed) and the defecation frequency decreased from 3-4 to about 2 times a day. No changes in defecation patterns were found in healthy subjects.5. These data indicate that the high-molecular-mass fraction that is responsible for faecal viscosity is peptidoglycan. Furthermore, a daily dose of a hydroxypropylcellulose solution to increase the viscosity of the intestinal contents of patients with Crohn's disease might be beneficial. This approach merits further study.
LINK
Pyrolysis liquids from lignocellulosic biomass have the potential to be used as a feed for aromatics such as benzene, toluene, and xylenes (BTX) using catalytic upgrading with zeolites. We here report an experimental study on the conversion of various pyrolysis oil fractions to determine the most suitable one for BTX synthesis. For this purpose, the pyrolysis liquid was fractionated using several extraction/distillation steps to give four fractions with different chemical compositions. The fractions were analyzed in detail using nuclear magnetic resonance spectroscopy, elemental analysis, gas chromatography-mass spectroscopy, thermogravimetric analysis, Karl-Fischer titration, and gel permeation chromatography. Catalytic pyrolysis experiments were carried out using a tandem microreactor with H-ZSM-5 (23) as the catalyst. The highest BTX yield of 24% (on a carbon and dry basis) was obtained using the fractions enriched in phenolics, whereas all others gave far lower yields (4.4-9%, on a carbon and dry basis). Correlations were established between the chemical composition of the feed fraction and the BTX yield. These findings support the concept of a pyrolysis biorefinery, where the pyrolysis liquid is separated into well-defined fractions before further dedicated catalytic conversions to biobased chemicals and biofuels using tailored catalysts.
Paper sludge contains papermaking mineral additives and fibers, which could be reused or recycled, thus enhancing the circularity. One of the promising technologies is the fast pyrolysis of paper sludge, which is capable of recovering > 99 wt.% of the fine minerals in the paper sludge and also affording a bio-liquid. The fine minerals (e.g., ‘circular’ CaCO3) can be reused as filler in consumer products thereby reducing the required primary resources. However, the bio-liquid has a lower quality compared to fossil fuels, and only a limited application, e.g., for heat generation, has been applied. This could be significantly improved by catalytic upgrading of the fast pyrolysis vapor, known as an ex-situ catalytic pyrolysis approach. We have recently found that a high-quality bio-oil (mainly ‘bio-based’ paraffins and low-molecular-weight aromatics, carbon yield of 21%, and HHV of 41.1 MJ kg-1) was produced (Chem. Eng. J., 420 (2021), 129714). Nevertheless, catalyst deactivation occurred after a few hours’ of reaction. As such, catalyst stability and regenerability are of research interest and also of high relevance for industrial implementation. This project aims to study the potential of the add-on catalytic upgrading step to the industrial fast pyrolysis of paper sludge process. One important performance metric for sustainable catalysis in the industry is the level of catalyst consumption (kgcat tprod-1) for catalytic pyrolysis of paper sludge. Another important research topic is to establish the correlation between yield and selectivity of the bio-chemicals and the catalyst characteristics. For this, different types of catalysts (e.g., FCC-type E-Cat) will be tested and several reaction-regeneration cycles will be performed. These studies will determine under which conditions catalytic fast pyrolysis of paper sludge is technically and economically viable.