A baseline study was performed to characterize the stormwater quality from the upstream roofs and road areas. Results showed variations in stormwater quality. This may inhibit single-step treatment performance. Therefore, a ‘treatment train’ of several SUDS measures was developed in order to achieve high pollutionremoval rates and to help prevent loss of valuable archaeological deposits and thereby reduce subsidence.
DOCUMENT
This CIENS-report sums up the main findings from the project “Cultural heritage and water management in urban planning” (Urban WATCH), financed by the Research Council of Norway through the MILJØ2015 programme, and cofunded by the Directorate for Cultural Heritage in Norway (Riksantikvaren) and the Geological Survey of Norway (NGU). The project started up in 2012 and ended in 2015.
DOCUMENT
City growth threatens sustainable development of cities. Over the past decades increased urbanization has created more pressure - not only on the suburban outskirts - but also in the inner core of the cities, putting important environmental issues such as water management and cultural heritage under stress. Cultural heritage, either standing monuments or archaeological remains, is internationally recognized as an important legacy of our history. The European Convention on the Protection of the Archaeological Heritage incorporates concepts and ideas that have become accepted practice in Europe. Conservation and enhancement of archaeological heritage is one of the goals of urban planning policies. One of the key objectives of the European policy is to protect, preferably in-situ, archaeological remains buried in the soil or seabed and to incorporate archaeological heritage into spatial planning policies. Conflicts with prior uses and unappreciated impacts on other subsurface resources, amongst them archaeological heritage, make use of underground space in cities suboptimal. In terms of ecosystem services, the subsurface environment acts either as a carrier of archaeological heritage in situ (stewardship) or supports above-ground cultural heritage. Often, it’s not enough to protect the heritage site or monument itself: new developments outside a specific protected area can lead to changes in groundwater level, and cause serious damage to heritage buildings and archaeological deposits. This paper presents good practices in cultural heritage management and the use of subsurface knowledge in urban areas.
DOCUMENT
The shallow subsurface in historic cities often contains extensive archaeological remains, also known as cultural deposits. Preservation conditions for naturally degradable archaeological remains are strongly dependent on the presence or absence of groundwater. One of the main goals at such heritage sites is to establish a stable hydrological environment. Green infrastructural solutions such as Sustainable Urban Drainage Systems (SUDS) can support preservation of cultural deposits. Several cases show that implementation of SUDS can be cost effective at preservation of cultural deposits. These include Motte of Montferland, City mound of Vlaardingen, Weiwerd in Delfzijl, and the Leidse Rijn area. In all cases, the amount of underground infrastructure is minimised to prevent damaging cultural layers. SUDS have been implemented to preserve cultural heritage. The first monitoring results and evaluation of the processes give valuable lessons learned, transnational knowledge exchange is an important element to bring the experiences across boundaries.
DOCUMENT
Urban flooding has become a key issue for many cities around the world. The project ‘INnovations for eXtreme Climatic EventS’ (INXCES) developed new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level. DEMs (digital elevation maps) have been used for more than a decade now as quick scan models to indicate locations that are vulnerable to urban flooding. In the last years the datasets are getting bigger and multidisciplinary stakeholders are becoming more demanding and require faster and more visual results. In this paper, the development and practical use of DEMs is exemplified by the case study of Bergen (Norway), where flood modelling using DEM is carried out in 2017 and in 2009. We can observe that the technology behind tools using DEMs is becoming more common and improved, both with a higher accuracy and a higher resolution. Visualization tools are developed to raise awareness and understanding among different stakeholders in Bergen and around the world. We can conclude that the evolution of DEMS is successful in handling bigger datasets and better (3D) visualization of results with a higher accuracy and a higher resolution. With flood maps the flow patterns of stormwater are analysed and locations are selected to implement (sub-)surface measures as SuDS (Sustainable Urban Drainage systems) that store and infiltrate stormwater. In the casestudy Bergen the following (sub-)surface SuDS have been recently implemented with the insights of DEMS: settlement storage tank, rainwater garden, swales, permeable pavement and I/T-drainage. The research results from the case study Bergen will be shared by tools to stimulate international knowledge exchange. New improved DEMs and connected (visualization) tools will continue to play an important role in (sub-)surface flood management and climate resilient urban planning strategies around the world.
DOCUMENT
The research presented in this thesis has highlighted (bio)geochemical, hydrological, and wetland ecological processes that interact and enhance ecosystem development on wetlands built on fine sediment. A combination of greenhouse and laboratory experiments were conducted. Some measured data from these experiments formed important input for subsequent analysis in a modeling environment. The findings presented in Chapters 2-6 can be divided into four topics: 1) Plant–soil interactions in the terrestrial zone, 2) wetland–terrestrial processes influencing nutrient availability in the land–water zone, 3) effects of plants on sediment consolidation in the terrestrial zone, and 4) effects of bioturbation on nutrient availability in the aquatic zone. The next sections give a summary of the results for these four topics. The last section summarizes the recommendations formulated for the Marker Wadden project.
DOCUMENT
As the Arctic undergoes unprecedented environmental and climate transformations, an urgent call for inclusive governance and intergenerational leadership echoes across the circumpolar region. In January 2024, 29 Emerging Leaders from the Circumpolar Arctic and Subarctic gathered in Northern Norway ahead of the 2024 Arctic Frontiers Conference. This diverse group, with global identities and multi-disciplinary backgrounds spanning science, policy, business, geopolitics, and law, brought together experiences that inspired this paper. We highlight the unique perspectives offered by younger generations and leaders to advocate for changes across a spectrum of critical Arctic issues. Our voices must be present in the decision-making which shapes our future, yet we observe some politicians, diplomats, legal, and business officials engaging in protracted discourse overlooking the urgent realities faced by those most directly impacted.We address the concept of “youthwashing” and offer a critique, as well as actionable recommendations, for fostering inclusive decision-making. We explore the role of youth leadership in Arctic governance across various disciplines and how diverse perspectives are required to better shape Arctic futures. Our concerns encompass the sustainable management of the Arctic’s natural resources, respect and protection of Indigenous rights and Traditional Knowledge, and developing solutions rooted in sustainability, survivance, and justice. As Emerging Leaders, we aspire to create liveable futures for generations to come, challenging the present trajectory set by current senior leadership. In turn, we ensure that while the Arctic is undergoing significant change, it develops in a framework respectful of all generations, ultimately rooted in justice for all Arctic peoples.
LINK