The current electroencephalography study investigated the relationship between the motor and (language) comprehension systems by simultaneously measuring mu and N400 effects. Specifically, we examined whether the pattern of motor activation elicited by verbs depends on the larger sentential context. A robust N400 congruence effect confirmed the contextual manipulation of action plausibility, a form of semantic congruency. Importantly, this study showed that: (1) Action verbs elicited more mu power decrease than non-action verbs when sentences described plausible actions. Action verbs thus elicited more motor activation than non-action verbs. (2) In contrast, when sentences described implausible actions, mu activity was present but the difference between the verb types was not observed. The increased processing associated with a larger N400 thus coincided with mu activity in sentences describing implausible actions. Altogether, context-dependent motor activation appears to play a functional role in deriving context-sensitive meaning.
DOCUMENT
Functional Magnetic Resonance Imaging (fMRI) was used to study the activation of cerebral motor networks during auditory perception of music in professional keyboard musicians (n=12). The activation paradigm implied that subjects listened to two-part polyphonic music, while either critically appraising the performance or imagining they were performing themselves. Two-part polyphonic audition and bimanual motor imagery circumvented a hemisphere bias associated with the convention of playing the melody with the right hand. Both tasks activated ventral premotor and auditory cortices, bilaterally, and the right anterior parietal cortex, when contrasted to 12 musically unskilled controls. Although left ventral premotor activation was increased during imagery (compared to judgment), bilateral dorsal premotor and right posterior-superior parietal activations were quite unique to motor imagery. The latter suggests that musicians not only recruited their manual motor repertoire but also performed a spatial transformation from the vertically perceived pitch axis (high and low sound) to the horizontal axis of the keyboard. Imagery-specific activations in controls were seen in left dorsal parietal-premotor and supplementary motor cortices. Although these activations were less strong compared to musicians, this overlapping distribution indicated the recruitment of a general 'mirror-neuron' circuitry. These two levels of sensori-motor transformations point towards common principles by which the brain organizes audition-driven music performance and visually guided task performance.
DOCUMENT
Motor activation is rarely integrated into the support of people with profound intellectual and multiple disabilities (PIMD), which might be the result of the limited evidence-based knowledge in this field. Practitioners have recently been developing several motor initiatives for people with PIMD, but it remains unclear about what core elements the motor initiatives actually consist of and towhat level of quality it is implemented in practice. This study aims to offer an overview and analysis of the content and quality of motor initiatives actually in use for people with PIMD. Motor initiatives were explored by asking practitioners to complete an online inventory form. Documents, expert knowledge, and observations were used to collect data about the characteristics of themotor initiatives. The quality of the motor initiatives which met our eligibility criteria, was analyzed on the basis of the level of evidencefor their effectiveness. The inventory yielded 118 motor initiatives of which 17 met the eligibility criteria. We identified four motor initiatives reflecting an approach to motorically activate people with PIMD within various activities, three including powerassisted exercises, three with aquatic exercises, two frameworks which integrated motor activities into their daily programs, two methods which included small-scale activities, two rhythmic movement therapies, and one program including gross motor activities. We found limited indications for descriptive evidence from 17 initiatives, limited or no indications for theoretical evidence from 12 and five initiatives respectively, and none of the initiatives provided a causal level of evidence for effectiveness. A wide variety of motor initiatives is used in current practice to activate persons with PIMD, although their effectiveness is actually unproven.Science and practice should cooperate to develop an evidence-based understanding to ensure more evidence-based support for themotor activation of people with PIMD in the future.
DOCUMENT
Motor learning is particularly challenging in neurological rehabilitation: patients who suffer from neurological diseases experience both physical limitations and difficulties of cognition and communication that affect and/or complicate the motor learning process. Therapists (e.g.,, physiotherapists and occupational therapists) who work in neurorehabilitation are therefore continuously searching for the best way to facilitate patients during these intensive learning processes. To support therapists in the application of motor learning, a framework was developed, integrating knowledge from the literature and the opinions and experiences of international experts. This article presents the framework, illustrated by cases from daily practice. The framework may assist therapists working in neurorehabilitation in making choices, implementing motor learning in routine practice, and supporting communication of knowledge and experiences about motor learning with colleagues and students. The article discusses the framework and offers suggestions and conditions given for its use in daily practice.
DOCUMENT
In cognitive science, creative ideas are defined as original and feasible solutions in response to problems. A common proposal is that creative ideas are generated across dedicated cognitive pathways. Only after creative ideas have emerged, they can be enacted to solve the problem. We present an alternative viewpoint, based upon the dynamic systems approach to perception and action, that creative solutions emerge in the act rather than before. Creative actions, thus, are as much a product of individual constraints as they are of the task and environment constraints. Accordingly, we understand creative motor actions as functional movement patterns that are new to the individual and/or group and adapted to satisfy the constraints on the motor problem at hand. We argue that creative motor actions are promoted by practice interventions that promote exploration by manipulating constraints. Exploration enhances variability of functional movement patterns in terms of either coordination or control solutions. At both levels, creative motor actions can emerge from finding new and degenerate adaptive motor solutions. Generally speaking, we anticipate that in most cases, when exposed to variation in constraints, people are not looking for creative motor actions, but discover them while doing an effort to satisfy constraints. For future research, this paper achieves two important aspects: it delineates how adaptive (movement) variability is at the heart of (motor) creativity, and it sets out methodologies toward stimulating adaptive variability.
DOCUMENT
Objective. Clinicians may use implicit or explicit motor learning approaches to facilitatemotor learning of patients with stroke. Implicit motor learning approaches have shown promising results in healthy populations. The purpose of this study was to assess whether an implicit motor learning walking intervention is more effective compared with an explicit motor learning walking intervention delivered at home regarding walking speed in people after stroke in the chronic phase of recovery. Methods. This randomized, controlled, single-blind trial was conducted in the home environment. The 79 participants, who were in the chronic phase after stroke (age = 66.4 [SD = 11.0] years; time poststroke = 70.1 [SD = 64.3] months; walking speed = 0.7 [SD = 0.3] m/s; Berg Balance Scale score = 44.5 [SD = 9.5]), were randomly assigned to an implicit (n = 38) or explicit (n = 41) group. Analogy learning was used as the implicit motor learning walking intervention, whereas the explicit motor learning walking intervention consisted of detailed verbal instructions. Both groups received 9 training sessions (30 minutes each), for a period of 3 weeks, targeted at improving quality of walking. The primary outcome was walking speed measured by the 10-MeterWalk Test at a comfortable walking pace. Outcomes were assessed at baseline, immediately after intervention, and 1 month postintervention. Results. No statistically or clinically relevant differences between groups were obtained postintervention (between-group difference was estimated at 0.02 m/s [95% CI = −0.04 to 0.08] and at follow-up (between-group difference estimated at −0.02 m/s [95% CI = −0.09 to 0.05]). Conclusion. Implicit motor learning was not superior to explicit motor learning to improve walking speed in people after stroke in the chronic phase of recovery. Impact. To our knowledge, this is the first study to examine the effects of implicit compared with explicit motor learning on a functional task in people after stroke. Results indicate that physical therapists can use (tailored) implicit and explicit motor learning strategies to improve walking speed in people after stroke who are in the chronic phase of recovery.
DOCUMENT
Movement is an essential part of our lives. Throughout our lifetime, we acquire many different motor skills that are necessary to take care of ourselves (e.g., eating, dressing), to work (e.g., typing, using tools, care for others) and to pursue our hobbies (e.g., running, dancing, painting). However, as a consequence of aging, trauma or chronic disease, motor skills may deteriorate or become “lost”. Learning, relearning, and improving motor skills may then be essential to maintain or regain independence. There are many different ways in which the process of learning a motor skill can be shaped in practice. The conceptual basis for this thesis was the broad distinction between implicit and explicit forms of motor learning. Physiotherapists and occupational therapists are specialized to provide therapy that is tailored to facilitate the process of motor learning of patients with a wide range of pathologies. In addition to motor impairments, patients suffering from neurological disorders often also experience problems with cognition and communication. These problems may hinder the process of learning at a didactic level, and make motor learning especially challenging for those with neurological disorders. This thesis focused on the theory and application of motor learning during rehabilitation of patients with neurological disorders. The overall aim of this thesis was to provide therapists in neurological rehabilitation with knowledge and tools to support the justified and tailored use of motor learning in daily clinical practice. The thesis is divided into two parts. The aim of the first part (Chapters 2‐5) was to develop a theoretical basis to apply motor learning in clinical practice, using the implicit‐explicit distinction as a conceptual basis. Results of this first part were used to develop a framework for the application of motor learning within neurological rehabilitation (Chapter 6). Afterwards, in the second part, strategies identified in first part were tested for feasibility and potential effects in people with stroke (Chapters 7 and 8). Chapters 5-8 are non-final versions of an article published in final form in: Chapter 5: Kleynen M, Moser A, Haarsma FA, Beurskens AJ, Braun SM. Physiotherapists use a great variety of motor learning options in neurological rehabilitation, from which they choose through an iterative process: a retrospective think-aloud study. Disabil Rehabil. 2017 Aug;39(17):1729-1737. doi: 10.1080/09638288.2016.1207111. Chapter 6: Kleynen M, Beurskens A, Olijve H, Kamphuis J, Braun S. Application of motor learning in neurorehabilitation: a framework for health-care professionals. Physiother Theory Pract. 2018 Jun 19:1-20. doi: 10.1080/09593985.2018.1483987 Chapter 7: Kleynen M, Wilson MR, Jie LJ, te Lintel Hekkert F, Goodwin VA, Braun SM. Exploring the utility of analogies in motor learning after stroke: a feasibility study. Int J Rehabil Res. 2014 Sep;37(3):277-80. doi: 10.1097/MRR.0000000000000058. Chapter 8: Kleynen M, Jie LJ, Theunissen K, Rasquin SM, Masters RS, Meijer K, Beurskens AJ, Braun SM. The immediate influence of implicit motor learning strategies on spatiotemporal gait parameters in stroke patients: a randomized within-subjects design. Clin Rehabil. 2019 Apr;33(4):619-630. doi: 10.1177/0269215518816359.
DOCUMENT
BACKGROUND: Approximately 5%-10% of elementary school children show delayed development of fine motor skills. To address these problems, detection is required. Current assessment tools are time-consuming, require a trained supervisor, and are not motivating for children. Sensor-augmented toys and machine learning have been presented as possible solutions to address this problem.OBJECTIVE: This study examines whether sensor-augmented toys can be used to assess children's fine motor skills. The objectives were to (1) predict the outcome of the fine motor skill part of the Movement Assessment Battery for Children Second Edition (fine MABC-2) and (2) study the influence of the classification model, game, type of data, and level of difficulty of the game on the prediction.METHODS: Children in elementary school (n=95, age 7.8 [SD 0.7] years) performed the fine MABC-2 and played 2 games with a sensor-augmented toy called "Futuro Cube." The game "roadrunner" focused on speed while the game "maze" focused on precision. Each game had several levels of difficulty. While playing, both sensor and game data were collected. Four supervised machine learning classifiers were trained with these data to predict the fine MABC-2 outcome: k-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), and support vector machine (SVM). First, we compared the performances of the games and classifiers. Subsequently, we compared the levels of difficulty and types of data for the classifier and game that performed best on accuracy and F1 score. For all statistical tests, we used α=.05.RESULTS: The highest achieved mean accuracy (0.76) was achieved with the DT classifier that was trained on both sensor and game data obtained from playing the easiest and the hardest level of the roadrunner game. Significant differences in performance were found in the accuracy scores between data obtained from the roadrunner and maze games (DT, P=.03; KNN, P=.01; LR, P=.02; SVM, P=.04). No significant differences in performance were found in the accuracy scores between the best performing classifier and the other 3 classifiers for both the roadrunner game (DT vs KNN, P=.42; DT vs LR, P=.35; DT vs SVM, P=.08) and the maze game (DT vs KNN, P=.15; DT vs LR, P=.62; DT vs SVM, P=.26). The accuracy of only the best performing level of difficulty (combination of the easiest and hardest level) achieved with the DT classifier trained with sensor and game data obtained from the roadrunner game was significantly better than the combination of the easiest and middle level (P=.046).CONCLUSIONS: The results of our study show that sensor-augmented toys can efficiently predict the fine MABC-2 scores for children in elementary school. Selecting the game type (focusing on speed or precision) and data type (sensor or game data) is more important for determining the performance than selecting the machine learning classifier or level of difficulty.
DOCUMENT
Objectives: The development of children’s motor competence (MC) from early to middle childhood can follow different courses. The purpose of this longitudinal study was to describe and quantify the prevalence of patterns of MC development from early to middle childhood and to identify undesirable patterns. Design: The study used a longitudinal design. Data were collected in three consecutive years, between February 2020 (T0) and May 2022 (T2). Methods: A total of 1128 typically developing Dutch children (50.2% male) between 4 and 6 years old at baseline (M = 5.35 ± 0.69 years) participated in this study. MC was measured with the Athletic Skills Track and converted into Motor Quotient (MQ) scores. To convert all individual MQ scores into meaningful patterns of MC development, changes in MQ categories were analyzed between the different timepoints. Results: A total of 11 different developmental patterns were found. When grouping the different patterns, five undesirable patterns were found with 18.2% of the children, showing an undesirable pattern of MC development between T0 and T2. The patterns of motor development of the other children showed a normal or fluctuating course. Conclusions: There is a lot of variation in MC in early and middle childhood. A substantial percentage of young children showed undesirable MC developmental patterns emphasizing the need for early and targeted interventions.
DOCUMENT
Objective: Motor competence development from early to middle childhood is accompanied by great variance. This course can be influenced by many factors in the ecosystem. The objective of this study was to examine which individual characteristics are associated with an undesirable motor competence development during the transition from early to middle childhood. Methods: A longitudinal study was conducted between February 2020 and May 2022. Actual and perceived motor competence and the potential determinants physical activity enjoyment, weight status, and organized sports participation of children (49% boys) aged 4–6 years old at T0 (N = 721) were measured at two points in time, separated by a two-year interval. Associations between potential determinants and AMC, including interactions with time, were analyzed using linear mixed-effect regression models with continuous motor quotient scores as outcome variables. Results: Overweight, obesity, and lack of organized sports participation were associated with lower motor quotient scores over time. Multivariate analyses showed that associations of weight status (overweight and obesity) and sports participation with motor quotient scores remained significant after adjustment for variations in perceived motor competence and physical activity enjoyment. Conclusions: Excessive body weight and lack of sports participation from early childhood are associated with an increased risk of an undesirable motor competence development over time.
DOCUMENT