In their developmental model, Stodden et al. (2008) propose age-dependent relations between motor competence, physical activity,perceived motor competence, physical fitness, and weight status thatcan lead to a spiral of (dis)engagement. The goal of this study was toexplore these relations in a large sample of Dutch primary schoolchildren. To our knowledge, this is the first study including all fiveaspects of the model and a large sample of children between four andthirteen years old. Cross-sectional data was collected in 2068 children(ages 4–13), divided over 9 age groups. During physical educationclasses, they completed the 4-Skills Test, a physical activity question-naire, versions of the Self-Perception Profile for Children, Eurofit testand anthropometry measurements. Correlation coefficients per agegroup were calculated (full information maximum likelihood) andtransformed using a Fisher’s r to z transformation, after which thetest-statistic z was calculated. The results show that all five factors arerelated to each other and that a tipping point exists at which relationsemerge or strengthen. Physical fitness is related to motor competenceand physical activity and these relationships strengthen with age. Arelationship between BMI and the other four factors emerges in middlechildhood. Although the model described that physical activity stimu-lates motor competence in early childhood, our data showed that at ayoung age, both motor competence and perceived motor competencehad no relation with physical activity, while they were weakly related toeach other. In middle childhood, both motor competence and perceivedmotor competence were related to physical activity. Our findingsdemonstrate that children in late childhood who have higher perceivedmotor competence are also more physically active, have higher physicalfitness, higher motor competence and lower BMI. Our results indicatethat targeting motor competence at a young age might be a feasible wayto ensure continued participation in physical activities throughoutchildhood and adolescence. Funding source: Netherlands Organization for Scientific Research.
Movement is an essential part of our lives. Throughout our lifetime, we acquire many different motor skills that are necessary to take care of ourselves (e.g., eating, dressing), to work (e.g., typing, using tools, care for others) and to pursue our hobbies (e.g., running, dancing, painting). However, as a consequence of aging, trauma or chronic disease, motor skills may deteriorate or become “lost”. Learning, relearning, and improving motor skills may then be essential to maintain or regain independence. There are many different ways in which the process of learning a motor skill can be shaped in practice. The conceptual basis for this thesis was the broad distinction between implicit and explicit forms of motor learning. Physiotherapists and occupational therapists are specialized to provide therapy that is tailored to facilitate the process of motor learning of patients with a wide range of pathologies. In addition to motor impairments, patients suffering from neurological disorders often also experience problems with cognition and communication. These problems may hinder the process of learning at a didactic level, and make motor learning especially challenging for those with neurological disorders. This thesis focused on the theory and application of motor learning during rehabilitation of patients with neurological disorders. The overall aim of this thesis was to provide therapists in neurological rehabilitation with knowledge and tools to support the justified and tailored use of motor learning in daily clinical practice. The thesis is divided into two parts. The aim of the first part (Chapters 2‐5) was to develop a theoretical basis to apply motor learning in clinical practice, using the implicit‐explicit distinction as a conceptual basis. Results of this first part were used to develop a framework for the application of motor learning within neurological rehabilitation (Chapter 6). Afterwards, in the second part, strategies identified in first part were tested for feasibility and potential effects in people with stroke (Chapters 7 and 8). Chapters 5-8 are non-final versions of an article published in final form in: Chapter 5: Kleynen M, Moser A, Haarsma FA, Beurskens AJ, Braun SM. Physiotherapists use a great variety of motor learning options in neurological rehabilitation, from which they choose through an iterative process: a retrospective think-aloud study. Disabil Rehabil. 2017 Aug;39(17):1729-1737. doi: 10.1080/09638288.2016.1207111. Chapter 6: Kleynen M, Beurskens A, Olijve H, Kamphuis J, Braun S. Application of motor learning in neurorehabilitation: a framework for health-care professionals. Physiother Theory Pract. 2018 Jun 19:1-20. doi: 10.1080/09593985.2018.1483987 Chapter 7: Kleynen M, Wilson MR, Jie LJ, te Lintel Hekkert F, Goodwin VA, Braun SM. Exploring the utility of analogies in motor learning after stroke: a feasibility study. Int J Rehabil Res. 2014 Sep;37(3):277-80. doi: 10.1097/MRR.0000000000000058. Chapter 8: Kleynen M, Jie LJ, Theunissen K, Rasquin SM, Masters RS, Meijer K, Beurskens AJ, Braun SM. The immediate influence of implicit motor learning strategies on spatiotemporal gait parameters in stroke patients: a randomized within-subjects design. Clin Rehabil. 2019 Apr;33(4):619-630. doi: 10.1177/0269215518816359.
Background: Current use of smartphone cameras by parents create opportunities for longitudinal home-video-assessments to monitor infant development. We developed and validated a home-video method for parents, enabling Pediatric Physical Therapists to assess infants’ gross motor development with the Alberta Infant Motor Scale (AIMS). The objective of the present study was to investigate the feasibility of this home-video method from the parents’ perspective. Methods: Parents of 59 typically developing infants (0–19 months) were recruited, 45 parents participated in the study. Information about dropout was collected. A sequential mixed methods design was used to examine feasibility, including questionnaires and semi-structured interviews. While the questionnaires inquired after the practical feasibility of the home-video method, the interviews also allowed parents to comment on their feelings and thoughts using the home-video method. Results: Of 45 participating parents, 34 parents returned both questionnaires and eight parents agreed to an interview. Parent reported effort by the infants was very low: the home-video method is perceived as similar to the normal routine of playing. The parental effort level was acceptable. The main constraint parents reported was time planning. Parents noted it was sometimes difficult to find the right moment to record the infant’s motor behavior, that is, when parents were both at home and their baby was in the appropriate state. Technical problems with the web portal, reported by 28% of the parents were also experienced as a constraint. Positive factors mentioned by parents were: the belief that the home videos are valuable for family use, receiving feedback from a professional, the moments of one-on-one attention and interaction with their babies. Moreover, the process of recording the home videos resulted in an increased parental awareness of, and insight into, the gross motor development of their infant. Conclusion: The AIMS home-video method is feasible for parents of typically developing children. Most constraints are of a practical nature that can be addressed in future applications. Future research is needed to show whether the home-video method is also applicable for parents with an infant at risk of motor development problems.
Socio-economic pressures on coastal zones are on the rise worldwide, leaving increasingly less room for natural coastal change without affecting humans. The challenge is to find ways for social and natural systems to co-exist, co-develop and create synergies. The recent implementation of multi-functional, nature-based solutions (NBS) on the sandy Dutch coast seem to offer great potential in that respect. Surprisingly, the studies evaluating these innovative solutions paid little attention to how the social and natural systems interact in the NBS-modified coastal landscapes and if these interactions strengthen or weaken the primary functions of the NBS. It is not clear whether the objectives to improve coastal resilience and spatial quality will be met throughout the lifetime of the intervention. In the proposed project we will investigate the socio-bio-physical dynamics of anthropogenic sandy shores applying a Living Lab approach, documenting and analyzing interactions between evolving anthropogenic shores (Sand Motor and Hondsbossche Duinen, Fig.1) and people that use and manage these NBS-modified landscapes. Socio-bio-physical interactions will be investigated at various scales, and consequences for the long-term functionality of the NBS will be assessed, by coupling an agent-based social model and a cellular automata landscape model. By studying the behavior of the coupled system we aim to identify limits to, and optima in, multi-functionality of the NBS design, and will study how various stakeholders can influence the development of the NBS in desired directions with respect to primary NBS functions, including social and ecological goals. Together with consortium partners from public and private sectors we will co-create guidelines for management and maintenance of multifunctional NBS and design procedures and visualization tools for intervention design.