This research paper looks at a selection of science-fiction films and its connection with the progression of the use of television, telephone and print media. It also analyzes statistical data obtained from a questionnaire conducted by the research group regarding the use of communication media.
How can we make Inquiry-Based Science and Mathematics Education (IBSME) durable? …. by incorporating it in the pre-service programs for elementary teachers! With pre-service students the training can be much more intensive than with inservice teachers. To have an impact in the classroom the minimum contact time in IBSME in-service and coaching has to be more than 90 hours (Supovitz & Turner, 2000). That number is hard to achieve in in-service but it is quite possible in preservice teacher education. From 9 – 11 January 2013 the Hogeschool van Amsterdam (HvA) hosted a field-visit sponsored by the EU Fibonacci project with a focus on pre-service teacher education. HvA developed two programs to strengthen IBSME in pre-service. One is an elective minor (30 ECTS) Science and Technology Education in the regularelementary teacher education program. The other is a pre-service program for academically talented students jointly developed by the University of Amsterdam and the Hogeschool of Amsterdam with inquiry as a major emphasis. The two programs are described in chapters 1 & 3 in this booklet. If you are still wondering what IBSE is, then read chapter 2 of Ana Blagotinsek of the University of Slovenia. She describes a neat example of an IBSE process with students in elementary teacher education. How do you start with a real worldquestion and initially little knowledge, and how do you investigate the question and eventually generate the knowledge needed to answer it? During the field-visit each participant presented one particularly successful approach in teacher training, for example, training teachers by ‘model teaching’ activities with these teachers’ own pupils. This method was used in different ways by 4 participants in different countries. They describe this in chapters 4 – 7. In chapter 8 colleague Frans Van Mulken describes the development of a lessonseries on graphs, rate of change, and speed using inquiry strategies inspired by the late mathematician and mathematics educator Hans Freudenthal. He also describes how pre-service students could be trained to teach the lesson series as inquiry. Simultaneously with this booklet, a Dutch booklet is published with overlapping contents but focused more on the Dutch context.
The message we intend to communicate is that in the future, our cities can (partly) feed themselves with healthy foods grown in microbial gardens, which can be part of a household kitchen or community garden for providing fresh green "vegetables" where the energy for the artificial LED lighting for the microbial garden is coming from solar panels on roofs thereby making this system free from fossil energy.For Floriade 2022, we would like to introduce the Urban Microbial garden pop-up restaurant for feeding and greening the city. The menu will include a speciality microbiota vegan burger made from algae, seaweed, fungi and fava beans served on dishes made from baked mycelium. Our objective is to elicit consumer perception and opinion on the future of our new microbial food chain, which is fully sustainable and safer for the environment. Consumer opinions will be video recorded and compiled into a short movie/video for further inspiration and analysis for product/service development. This pop-up restaurant is a logical extension of the Art-Work by 4F.STUDIO (Kim van den Belt, Joshua Kelly, Steven Wobbes) already present in Kavel 123 at Floriade as part of the Light Challenge. The artwork depicts a future object for community gardens which supports the idea of locally produced microbes. Since we already have work at Floriade, this living-lab project has the benefit of broadening the vision of their work through more in-depth and visceral feedback.