Background: Nurse-sensitive indicators and nurses’ satisfaction with the quality of care are two commonly used ways to measure quality of nursing care. However, little is known about the relationship between these kinds of measures. This study aimed to examine concordance between nurse-sensitive screening indicators and nurse-perceived quality of care. Methods: To calculate a composite performance score for each of six Dutch non-university teaching hospitals, the percentage scores of the publicly reported nurse-sensitive indicators: screening of delirium, screening of malnutrition, and pain assessments, were averaged (2011). Nurse-perceived quality ratings were obtained from staff nurses working in the same hospitals by the Dutch Essentials of Magnetism II survey (2010). Concordance between the quality measures was analyzed using Spearman’s rank correlation. Results: The mean screening performances ranged from 63 % to 93 % across the six hospitals. Nurse-perceived quality of care differed significantly between the hospitals, also after adjusting for nursing experience, educational level, and regularity of shifts. The hospitals with high-levels of nurse-perceived quality were also high-performing hospitals according to nurse-sensitive indicators. The relationship was true for high-performing as well as lower-performing hospitals, with strong correlations between the two quality measures (r S = 0.943, p = 0.005). Conclusions: Our findings showed that there is a significant positive association between objectively measured nurse sensitive screening indicators and subjectively measured perception of quality. Moreover, the two indicators of quality of nursing care provide corresponding quality rankings. This implies that improving factors that are associated with nurses’ perception of what they believe to be quality of care may also lead to better screening processes. Although convergent validity seems to be established, we emphasize that different kinds of quality measures could be used to complement each other, because various stakeholders may assign different values to the quality of nursing care.
Light profoundly impacts many aspects of human physiology and behaviour, including the synchronization of the circadian clock, the production of melatonin, and cognition. These effects of light, termed the non-visual effects of light, have been primarily investigated in laboratory settings, where light intensity, spectrum and timing can be carefully controlled to draw associations with physiological outcomes of interest. Recently, the increasing availability of wearable light loggers has opened the possibility of studying personal light exposure in free-living conditions where people engage in activities of daily living, yielding findings associating aspects of light exposure and health outcomes, supporting the importance of adequate light exposure at appropriate times for human health. However, comprehensive protocols capturing environmental (e.g., geographical location, season, climate, photoperiod) and individual factors (e.g., culture, personal habits, behaviour, commute type, profession) contributing to the measured light exposure are currently lacking. Here, we present a protocol that combines smartphone-based experience sampling (experience sampling implementing Karolinska Sleepiness Scale, KSS ratings) and high-quality light exposure data collection at three body sites (near-corneal plane between the two eyes mounted on spectacle, neck-worn pendant/badge, and wrist-worn watch-like design) to capture daily factors related to individuals’ light exposure. We will implement the protocol in an international multi-centre study to investigate the environmental and socio-cultural factors influencing light exposure patterns in Germany, Ghana, Netherlands, Spain, Sweden, and Turkey (minimum n = 15, target n = 30 per site, minimum n = 90, target n = 180 across all sites). With the resulting dataset, lifestyle and context-specific factors that contribute to healthy light exposure will be identified. This information is essential in designing effective public health interventions.
MULTIFILE
Electrification of mobility exceeds personal transport to increasingly focus on particular segments such as city logistics and taxis. These commercial mobility segments have different motives to purchase a full electric vehicle and require a particular approach to incentivize and facilitate the transition towards electric mobility. A case where a municipality was successful in stimulating the transition to electric mobility is the taxi sector in the city of Amsterdam. Using results from a survey study (n = 300), this paper analyses the differences in characteristics between taxi drivers that either have or do not have interest in purchasing a full electric taxi vehicle. Results show a low intention across the sample to adopt a full electric vehicle and no statistically significant differences in demographics between the two groups. Differences were found between the level of acceptability of the covenant, the rated attractiveness of the incentives, the ratings of full electric vehicle attributes and the consultation of objective and social information sources. These results can be used by policy makers to develop new incentives that target specific topics currently influencing the interest in a full electric taxi vehicle.