‘Creating the Difference’ is the theme of the 2014 edition of the Chi Sparks conference. It is also the challenge that the Human-Computer Interaction (HCI) community is facing today. HCI is a creative field where practitioners engage in design, production, and evaluation of interactions between people and digital technology. Creating excellent interfaces for people, they make a difference in media and systems that people are eager to use. Usability and user experience are fundamental for achieving this, as are abilities at the forefront of technology, but key to a successful difference is getting the right concepts, addressing genuine, intrinsic, human needs. Researchers and practitioners contribute to this area from theory as well as practice by sharing, discussing, and demonstrating new ideas and developments. This is how HCI creates a difference for society, for individuals, businesses, education, and organizations. The difference that an interactive product or service makes might lie in the concept of it but also in the making, the creation of details and the realisation. It is through powerful concepts and exceptional quality of realisation that innovation is truly achieved. At the Chi Sparks 2014 conference, researchers and practitioners in the HCI community convene to share and discuss their efforts on researching and developing methods, techniques, products, and services that enable people to have better interactions with systems and other people. The conference is hosted at The Hague University of Applied Sciences, and proudly built upon the previous conferences in Arnhem (2011) and Leiden (2009). Copyright van de individuele papers ligt bij de betreffende auteurs.
Based on the theory of embodied cognition we developed NOOT, at tangible tool that allows marking audio-moments during creative sessions. A detailed analysis of using NOOT in practice lead to a reconceptualization of NOOT within processes of external scaffolding. It also spurred a new design project focused on reflection during group sessions
Safety at work The objective of the project Safety at Work is to increase safety at the workplace by applying and combining state of the art artefacts from personal protective equipment and ambient intelligence technology. In this state of the art document we focus on the developments with respect to how (persuasive) technology can help to influence behaviour in a natural, automatic way in order to make industrial environments safer. We focus on personal safety, safe environments and safe behaviour. Direct ways to influence safety The most obvious way to influence behaviour is to use direct, physical measures. In particular, this is known from product design. The safe use of a product is related to the characteristics of the product (e.g., sharp edges), the condition of people operating the product (e.g., stressed or tired), the man-machine interface (e.g., intuitive or complex) and the environmental conditions while operating the product (e.g., noisy or crowded). Design guidelines exist to help designers to make safe products. A risk matrix can be made with two axis: product hazards versus personal characteristics. For each combination one might imagine what can go wrong, and what potential solutions are. Except for ‘design for safety’ in the sense of no sharp edges or a redundant architecture, there is a development called ‘safety by design’ as well. Safety by design is a concept that encourages construction or product designers to ‘design out’ health and safety risks during design development. On this topic, we may learn from the area of public safety. Crime Prevention Through Environmental Design (or Designing Out Crime) is a multi-disciplinary approach to deterring criminal behaviour through environmental design. Designing Out Crime uses measures like taking steps to increase (the perception) that people can be seen, limiting the opportunity for crime by taking steps to clearly differentiate between public space and private space, and promoting social control through improved proprietary concern. Senses Neuroscience has shown that we have very little insight into our motivations and, consequently, are poor at predicting our own behaviour. It seems emotions are an important predictor of our behaviour. Input from our senses are important for our emotional state, and therefore influence our behaviour in an ‘ambient’ (invisible) way. The first sense we focus on is sight. Sight encompasses the perception of light intensity (illuminance) and colours (spectral distribution). Several researchers have studied the effects of light and colour in working environments. Results show, e.g., that elderly people can be helped with higher light levels, that cool colours like blue and green have a relaxing effect, while long-wavelength colours such as orange and red are stimulating and give more arousal, and that concentration and motivation of pupils at school can be influenced with light and colour settings. Identically, sound (hearing) has physiological effects (unexpected sounds cause extra cortisol -the fight or flight hormone- and the opposite for soothing sounds), psychological effects (sounds effect our emotions), cognitive effects (sounds effect our concentration) and behavioural effects (the natural behaviour of people is to avoid unpleasant sounds, and embrace pleasurable sounds). Smell affects 75% of daily emotions and plays an important role in memory, itis also important as a warning for danger (gas, burning smell). Research has shown that smell can influence work performance. Haptic feedback is a relative new area of research, and most studies focus on haptic feedback on handheld and automotive devices. Finally, employers have a duty to take every reasonable precaution to protect workers from heat stress disorders. Influence mechanisms: Cialdini To influence behaviour, we may learn from marketing psychology. Robert Cialdini states that if we have to think about every decision
MULTIFILE