BACKGROUND: Muscle force is important for daily life and sports and can be measured with a handheld dynamometer. Reference values are employed to quantify a subject's muscle force. It is not unambiguous whether reference values can be generalized to other populations. Objectives in this study were; first to confirm the reliability of the utilization of hand-held dynamometers for isometric strength measurement; second to determine reference values for a population of Dutch workers; third to compare these values with those of a USA population.METHODS: 462 Healthy working subjects (259 male, 203 female) were included in this study. Their age ranged from 20 to 60 years with a mean (sd) of 41 (11) years. Muscle force values from elbow flexion and extension, knee flexion and extension, and shoulder abduction were measured with the break method using a MicroFet 2 hand-held dynamometer. Reliability was analyzed by calculating ICC's and limits of agreement. Muscle force expressed in Newton, means, and confidence intervals were determined for males and females in age groups ranging from twenty to sixty years old. Regression equations and explained variances were calculated from weight, height, age, and gender. The mean values and 95% CI were compared to the results from other studies.RESULTS: Reliability was good; the ICC ranged between 0.83 to 0.94. The explained variance ranged from 0.25 to 0.51. Comparison of data for the Dutch population mean muscle force values with those from the USA revealed important differences between muscle force reference values for the American and Dutch populations.CONCLUSIONS: Muscle force measurements demonstrate a sound reliability. Reference values and regressions equations are made available for the Dutch population. Comparison with other studies indicates that reference values differ between countries.
DOCUMENT
Background: The ability to generate muscle strength is a pre-requisite for all human movement. Decreasedquadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various degrees of extension. Measurements between 110 and 130° extension present the highest values and the most significant increase after training. The objective of this study is to determine the test-retest reliability of muscle strength measurements by the QForce in older adults in 110° extension.Methods: Forty-one healthy older adults, 13 males and 28 females were included in the study. Mean (SD) age was 81.9 (4.89) years. Isometric muscle strength of the Quadriceps muscle was assessed with the Q Force at 110° of knee extension. Participants were measured at two sessions with a three to eight day interval between sessions. To determine relative reliability, the intraclass correlation coefficient (ICC) was calculated. To determine absolute reliability, Bland and Altman Limits of Agreement (LOA) were calculated and t-tests were performed.Results: Relative reliability of the Q Force is good to excellent as all ICC coefficients are higher than 0.75. Generally a large 95 % LOA, reflecting only moderate absolute reliability, is found as exemplified for the peak torque left leg of −18.6 N to 33.8 N and the right leg of −9.2 N to 26.4 N was between 15.7 and 23.6 Newton representing 25.2 % to 39.9 % of the size of the mean. Small systematic differences in mean were found between measurement session 1 and 2.Conclusion: The present study shows that the Q Force has excellent relative test-retest reliability, but limitedabsolute test-retest reliability. Since the Q Force is relatively cheap and mobile it is suitable for application in various clinical settings, however, its capability to detect changes in muscle force over time is limited but comparable to existing instruments.
DOCUMENT
Generalized loss of muscle mass is associated with increased morbidity and mortality in patients with cancer. The gold standard to measure muscle mass is by using computed tomography (CT). However, the aim of this prospective observational cohort study was to determine whether point-of-care ultrasound (POCUS) could be an easy-to-use, bedside measurement alternative to evaluate muscle status. Patients scheduled for major abdominal cancer surgery with a recent preoperative CT scan available were included. POCUS was used to measure the muscle thickness of mm. biceps brachii, mm. recti femoris, and mm. vasti intermedius 1 day prior to surgery. The total skeletal muscle index (SMI) was derived from patients’ abdominal CT scan at the third lumbar level. Muscle force of the upper and lower extremities was measured using a handheld dynamometer. A total of 165 patients were included (55% male; 65 ± 12 years). All POCUS measurements of muscle thickness had a statistically significant correlation with CT-derived SMI (r ≥ 0.48; p < 0.001). The strongest correlation between POCUS muscle measurements and SMI was observed when all POCUS muscle groups were added together (r = 0.73; p < 0.001). Muscle strength had a stronger correlation with POCUS-measured muscle thickness than with CT-derived SMI. To conclude, this study indicated a strong correlation between combined muscle thickness measurements performed by POCUS- and CT-derived SMI and measurements of muscle strength. These results suggest that handheld ultrasound is a valid tool for the assessment of skeletal muscle status.
DOCUMENT
Muscle fiber-type specific expression of UCP3-protein is reported here for the firts time, using immunofluorescence microscopy
DOCUMENT
Background Altered muscle-tendon properties in clubfoot patients could play a role in the occurrence of a relapse and negatively affect physical functioning. However, there is a lack of literature about muscle-tendon properties of clubfoot relapse patients. Research question The aim of this study was to determine whether the muscle architecture of the medial gastrocnemius and the morphology of the Achilles tendon differ between typically developing children (TDC) and clubfoot patients with and without a relapse clubfoot and to determine the relationships between morphological and functional gait outcomes. Methods A cross-sectional study was carried out in clubfoot patients treated according to the Ponseti method and TDC aged 4–8 years. A division between clubfoot patients with and without a relapse was made. Fifteen clubfoot patients, 10 clubfoot relapse patients and 19 TDC were included in the study. Morphologic properties of the medial head of the Gastrocnemius muscle and Achilles tendon were assessed by ultrasonography. Functional gait outcomes were assessed using three-dimensional gait analysis. Mean group differences were analysed with ANOVA and non-parametric alternatives. Relationships between functional and morphologic parameters were determined for all clubfoot patients together and for TDC with Spearman’s rank correlation. Results Morphological and functional gait parameters did not differ between clubfoot patients with and without a relapse, with exception of lower maximal dorsiflexor moment in clubfoot relapse patients. Compared to TDC, clubfoot and relapse patients did show lower functional gait outcomes, as well as shorter and more pennate muscles with a longer Achilles tendon. In all clubfoot patients, this longer relative tendon was related to higher ankle power and plantarflexor moment. Significance In clubfoot and relapse patients, abnormalities in morphology did not always relate to worse functional gait outcomes. Understanding these relationships in all clubfoot patients may improve the knowledge about clubfoot and aid future treatment planning.
MULTIFILE
In wheelchair rugby (WR) athletes with tetraplegia, wheelchair performance may be impaired due to (partial) loss of innervation of upper extremity and trunk muscles, and low blood pressure (BP). The objective was to assess the effects of electrical stimulation (ES)-induced co-contraction of trunk muscles on trunk stability, arm force/power, BP, and WR performance.
DOCUMENT
Optimizing physical performance is a major goal in current physiology. However, basic understanding of combining high sprint and endurance performance is currently lacking. This study identifies critical determinants of combined sprint and endurance performance using multiple regression analyses of physiologic determinants at different biologic levels. Cyclists, including 6 international sprint, 8 team pursuit, and 14 road cyclists, completed a Wingate test and 15-km time trial to obtain sprint and endurance performance results, respectively. Performance was normalized to lean body mass2/3 to eliminate the influence of body size. Performance determinants were obtained from whole-body oxygen consumption, blood sampling, knee-extensor maximal force, muscle oxygenation, whole-muscle morphology, and muscle fiber histochemistry of musculus vastus lateralis. Normalized sprint performance was explained by percentage of fast-type fibers and muscle volume (R2 = 0.65; P < 0.001) and normalized endurance performance by performance oxygen consumption (V̇o2), mean corpuscular hemoglobin concentration, and muscle oxygenation (R2 = 0.92; P < 0.001). Combined sprint and endurance performance was explained by gross efficiency, performance V̇o2, and likely by muscle volume and fascicle length (P = 0.056; P = 0.059). High performance V̇o2 related to a high oxidative capacity, high capillarization × myoglobin, and small physiologic cross-sectional area (R2 = 0.67; P < 0.001). Results suggest that fascicle length and capillarization are important targets for training to optimize sprint and endurance performance simultaneously.-Van der Zwaard, S., van der Laarse, W. J., Weide, G., Bloemers, F. W., Hofmijster, M. J., Levels, K., Noordhof, D. A., de Koning, J. J., de Ruiter, C. J., Jaspers, R. T. Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body.
DOCUMENT
Background The plantar intrinsic foot muscles (PIFMs) have a role in dynamic functions, such as balance and propulsion, which are vital to walking. These muscles atrophy in older adults and therefore this population, which is at high risk to falling, may benefit from strengthening these muscles in order to improve or retain their gait performance. Therefore, the aim was to provide insight in the evidence for the effect of interventions anticipated to improve PIFM strength on dynamic balance control and foot function during gait in adults. Methods A systematic literature search was performed in five electronic databases. The eligibility of peer-reviewed papers, published between January 1, 2010 and July 8, 2020, reporting controlled trials and pre-post interventional studies was assessed by two reviewers independently. Results from moderate- and high-quality studies were extracted for data synthesis by summarizing the standardized mean differences (SMD). The GRADE approach was used to assess the certainty of evidence. Results Screening of 9199 records resulted in the inclusion of 11 articles of which five were included for data synthesis. Included studies were mainly performed in younger populations. Low-certainty evidence revealed the beneficial effect of PIFM strengthening exercises on vertical ground reaction force (SMD: − 0.31-0.37). Very low-certainty evidence showed that PIFM strength training improved the performance on dynamic balance testing (SMD: 0.41–1.43). There was no evidence for the effect of PIFM strengthening exercises on medial longitudinal foot arch kinematics. Conclusions This review revealed at best low-certainty evidence that PIFM strengthening exercises improve foot function during gait and very low-certainty evidence for its favorable effect on dynamic balance control. There is a need for high-quality studies that aim to investigate the effect of functional PIFM strengthening exercises in large samples of older adults. The outcome measures should be related to both fall risk and the role of the PIFMs such as propulsive forces and balance during locomotion in addition to PIFM strength measures.
MULTIFILE
Background To gain insight into the role of plantar intrinsic foot muscles in fall-related gait parameters in older adults, it is fundamental to assess foot muscles separately. Ultrasonography is considered a promising instrument to quantify the strength capacity of individual muscles by assessing their morphology. The main goal of this study was to investigate the intra-assessor reliability and measurement error for ultrasound measures for the morphology of selected foot muscles and the plantar fascia in older adults using a tablet-based device. The secondary aim was to compare the measurement error between older and younger adults and between two different ultrasound machines. Methods Ultrasound images of selected foot muscles and the plantar fascia were collected in younger and older adults by a single operator, intensively trained in scanning the foot muscles, on two occasions, 1–8 days apart, using a tablet-based and a mainframe system. The intra-assessor reliability and standard error of measurement for the cross-sectional area and/or thickness were assessed by analysis of variance. The error variance was statistically compared across age groups and machines. Results Eighteen physically active older adults (mean age 73.8 (SD: 4.9) years) and ten younger adults (mean age 21.9 (SD: 1.8) years) participated in the study. In older adults, the standard error of measurement ranged from 2.8 to 11.9%. The ICC ranged from 0.57 to 0.97, but was excellent in most cases. The error variance for six morphology measures was statistically smaller in younger adults, but was small in older adults as well. When different error variances were observed across machines, overall, the tablet-based device showed superior repeatability. Conclusions This intra-assessor reliability study showed that a tablet-based ultrasound machine can be reliably used to assess the morphology of selected foot muscles in older adults, with the exception of plantar fascia thickness. Although the measurement errors were sometimes smaller in younger adults, they seem adequate in older adults to detect group mean hypertrophy as a response to training. A tablet-based ultrasound device seems to be a reliable alternative to a mainframe system. This advocates its use when foot muscle morphology in older adults is of interest.
MULTIFILE
Description of a new hand/palm-held computerized 3D force measuring system. The system is built for interface (direct) measurement of 3D manual contact force with real-time data presentation. Static calibration was performed of the 3D force sensor with variable preloads to study their effect as well of the prototype system adapted for clinical manual examination and treatment. The new system enables, for the first time, recording and presenting of 3D manual contact forces at the patient-practitioner interface. 3D direct manual contact force measures have the potential to give a more complete and differentiated characterization of patient and practitioner forces than 1D forces. Clinical validity of the prototype system will have to be investigated, and for studying specific clinical manual handling techniques, obvious limitations require further development.
DOCUMENT