RATIONALE: Currently there is no consensus on protein requirements for obese older adults during weight loss. Here we explore the potential use of a new method for assessment of protein requirements based on changes in appendicular muscle mass during weight loss.METHODS: 60 obese older adults were subjected to 13 wk weight loss program, including hypocaloric diet and resistance training. Assessment of appendicular muscle mass was performed by DXA at baseline and after 13 wk challenge period, and the difference calculated as muscle mass change. Protein intake (g/kg body weight and g/kg fat free mass (FFM)) at 13wks was used as marker of protein intake during 13 wk period. 30 subjects received 10 times weekly 20 g protein supplement throughout the 13 week hypocaloric phase which is included in the calculation of total protein intake. Receiver operating characteristic (ROC) curve analysis was used to explore the optimal cutoff point for protein intake (g/kg) versus increase in appendicular muscle mass of more than 250 g over 13 wks (y/n). Subsequently, logistic regression analysis was performed for protein intake cutoff and muscle mass accretion, adjusted for sex, age, baseline BMI, and training compliance.RESULTS: ROC curve analysis provided a protein intake level per day of 1.2 g/kg bw and 1.9 g/kg FFM as cutoff point. Presence of muscle mass accretion during 13 wk challenge period was significantly higher with protein intake higher than 1.2 g/kg bw (OR 5.4, 95%CI 1.4-20.6, p = 0.013) or higher than 1.9 g/kg FFM (OR 8.1, 95%CI 2.1-31.9, p = 0.003). Subjects with a protein intake higher than 1.2 g/kg had significantly more often muscle mass accretion, compared to subjects with less protein intake (10/14 (72%) vs 15/46 (33%), p = 0.010). For 1.9 g/kg FFM this was 70% vs 28% (p = 0.002).CONCLUSION: This exploratory study provided a level of at least 1.2 g/kg body weight or 1.9 g/kg fat free mass as optimal daily protein intake for obese older adults under these challenged conditions of weight loss, based on muscle mass accretion during the challenge.TRIAL REGISTRATION: Dutch Trial Register under number NTR2751.
Insulin sensitivity and metabolic flexibility decrease in response to bed rest, but the temporal and causal adaptations in human skeletal muscle metabolism are not fully defined. Here, we use an integrative approach to assess human skeletal muscle metabolism during bed rest and provide a multi-system analysis of how skeletal muscle and the circulatory system adapt to short- and long-term bed rest (German Clinical Trials: DRKS00015677). We uncover that intracellular glycogen accumulation after short-term bed rest accompanies a rapid reduction in systemic insulin sensitivity and less GLUT4 localization at the muscle cell membrane, preventing further intracellular glycogen deposition after long-term bed rest. We provide evidence of a temporal link between the accumulation of intracellular triglycerides, lipotoxic ceramides, and sphingomyelins and an altered skeletal muscle mitochondrial structure and function after long-term bed rest. An intracellular nutrient overload therefore represents a crucial determinant for rapid skeletal muscle insulin insensitivity and mitochondrial alterations after prolonged bed rest.
(1) Background: Recent research showed that subtypes of patients with type 2 diabetes may differ in response to lifestyle interventions based on their organ-specific insulin resistance (IR). (2) Methods: 123 Subjects with type 2 diabetes were randomized into 13-week lifestyle intervention, receiving either an enriched protein drink (protein+) or an isocaloric control drink (control). Before and after the intervention, anthropometrical and physiological data was collected. An oral glucose tolerance test was used to calculate indices representing organ insulin resistance (muscle, liver, and adipose tissue) and β-cell functioning. In 82 study-compliant subjects (per-protocol), we retrospectively examined the intervention effect in patients with muscle IR (MIR, n = 42) and without MIR (no-MIR, n = 40). (3) Results: Only in patients from the MIR subgroup that received protein+ drink, fasting plasma glucose and insulin, whole body, liver and adipose IR, and appendicular skeletal muscle mass improved versus control. Lifestyle intervention improved body weight and fat mass in both subgroups. Furthermore, for the MIR subgroup decreased systolic blood pressure and increased VO2peak and for the no-MIR subgroup, a decreased 2-h glucose concentration was found. (4) Conclusions: Enriched protein drink during combined lifestyle intervention seems to be especially effective on increasing muscle mass and improving insulin resistance in obese older, type 2 diabetes patients with muscle IR.