Mounting evidence supports the use of face-to-face pain neuroscience education for the treatment of chronic pain patients. This study aimed at examining whether written education about pain neuroscience improves illness perceptions, catastrophizing, and health status in patients with fibromyalgia. A double-blind, multicenter randomized controlled clinical trial with 6-month follow-up was conducted. Patients with FM (n = 114) that consented to participate were randomly allocated to receive either written pain neuroscience education or written relaxation training. Written pain neuroscience education comprised of a booklet with pain neuroscience education plus a telephone call to clarify any difficulties; the relaxation group received a booklet with relaxation education and a telephone call. The revised illness perception questionnaire, Pain Catastrophizing Scale, and fibromyalgia impact questionnaire were used as outcome measures. Both patients and assessors were blinded. Repeated-measures analyses with last observation carried forward principle were performed. Cohen's d effect sizes (ES) were calculated for all within-group changes and between-group differences. The results reveal that written pain neuroscience education does not change the impact of FM on daily life, catastrophizing, or perceived symptoms of patients with FM. Compared with written relaxation training, written pain neuroscience education improved beliefs in a chronic timeline of FM (P = 0.03; ES = 0.50), but it does not impact upon other domains of illness perceptions. Compared with written relaxation training, written pain neuroscience education slightly improved illness perceptions of patients with FM, but it did not impart clinically meaningful effects on pain, catastrophizing, or the impact of FM on daily life. Face-to-face sessions of pain neuroscience education are required to change inappropriate cognitions and perceived health in patients with FM.
LINK
Mirror neurons in the cerebral cortex have been shown to fire not onlyduring performance but also during visual and auditory observation ofactivity. This phenomenon is commonly called cerebral resonance behavior.This would mean that cortical motor regions would not only beactivated while singing, but also while listening to music. The sameshould hold true for playing a music instrument. Although most individualsare able to sing along when they hear a melody, even highlyskilled instrumentalists, however, are frequently unable to play by ear.They are score-dependent—i.e. they are only able to play a piece of musicwhen they have access to the notes—while musicians who are able to playby ear and improvise are non score-dependent; they are able to playwithout notes. Our hypothesis is that score-dependent instrumentalistswill exhibit less cerebral resonance behavior than non score-dependentmusicians while listening to music. Using fMRI to measure BOLD response,subjects listen to two-part harmony presented with headphones.The following experimental conditions are distinguished: (1) well-knownvs. unknown music (2) motor imagery vs. attentive listening. A voxelbasedanalysis of differences between the condition-related cerebral activationsis performed using Statistical Parametric Mapping.
Vroegtijdige scheiding van melkkoe en kalf roept in de samenleving in toenemende mate vragen op over de effecten daarvan op dierenwelzijn. In de visie van de Duurzame Zuivelketen (DZK) valt de zorg voor kalveren binnen de scope van zuivelkwaliteitssystemen. Ter onderbouwing van haar beleidsvisie aangaande vroegtijdig scheiden van koe en kalf heeft de DZK in 2015 onderzoek laten doen. Dit onderzoek is uitgevoerd door het lectoraat Welzijn van Dieren van Van Hall Larenstein. Het behelst literatuur- en survey-onderzoek waarmee de stand van zaken – wetenschappelijke kennis en gangbare praktijk – rond de kwestie in kaart is gebracht. Tenslotte is door praktijkdeskundigen, onderzoekers en melkveehouders gereflecteerd op de voorlopige resultaten.
MULTIFILE