Skeletal muscle-related symptoms are common in both acute coronavirus disease (Covid)-19 and post-acute sequelae of Covid-19 (PASC). In this narrative review, we discuss cellular and molecular pathways that are affected and consider these in regard to skeletal muscle involvement in other conditions, such as acute respiratory distress syndrome, critical illness myopathy, and post-viral fatigue syndrome. Patients with severe Covid-19 and PASC suffer from skeletal muscle weakness and exercise intolerance. Histological sections present muscle fibre atrophy, metabolic alterations, and immune cell infiltration. Contributing factors to weakness and fatigue in patients with severe Covid-19 include systemic inflammation, disuse, hypoxaemia, and malnutrition. These factors also contribute to post-intensive care unit (ICU) syndrome and ICU-acquired weakness and likely explain a substantial part of Covid-19-acquired weakness. The skeletal muscle weakness and exercise intolerance associated with PASC are more obscure. Direct severe acute respiratory syndrome coronavirus (SARS-CoV)-2 viral infiltration into skeletal muscle or an aberrant immune system likely contribute. Similarities between skeletal muscle alterations in PASC and chronic fatigue syndrome deserve further study. Both SARS-CoV-2-specific factors and generic consequences of acute disease likely underlie the observed skeletal muscle alterations in both acute Covid-19 and PASC.
Generalized joint hypermobility (GJH) is highly prevalent among patients diagnosed with chronic pain. When GJH is accompanied by pain in ≥4 joints over a period ≥3 months in the absence of other conditions that cause chronic pain, the hypermobility syndrome (HMS) may be diagnosed. In addition, GJH is also a clinical sign that is frequently present in hereditary diseases of the connective tissue, such as the Marfan syndrome, osteogenesis imperfecta, and the Ehlers-Danlos syndrome. However, within the Ehlers-Danlos spectrum, a similar subcategory of patients having similar clinical features as HMS but lacking a specific genetic profile was identified: Ehlers-Danlos syndrome hypermobility type (EDS-HT). Researchers and clinicians have struggled for decades with the highly diverse clinical presentation within the HMS and EDS-HT phenotypes (Challenge 1) and the lack of understanding of the pathological mechanisms that underlie the development of pain and its persistence (Challenge 2). In addition, within the HMS/EDS-HT phenotype, there is a high prevalence of psychosocial factors, which again presents a difficult issue that needs to be addressed (Challenge 3). Despite recent scientific advances, many obstacles for clinical care and research still remain. To gain further insight into the phenotype of HMS/EDS-HT and its mechanisms, clearer descriptions of these populations should be made available. Future research and clinical care should revise and create consensus on the diagnostic criteria for HMS/EDS-HT (Solution 1), account for clinical heterogeneity by the classification of subtypes within the HMS/EDS-HT spectrum (Solution 2), and create a clinical core set (Solution 3).
BACKGROUND: In typically developing children, participation in sports has been proven to be positively correlated to both physical and psychosocial health outcomes. In children and adolescents with a physical disability or chronic disease participation in both recreational and competitive sports is often reduced, while for this population an active lifestyle may be even more important in reaching optimal levels of physical and psychosocial health. Therefore, the aim of the Health in Adapted Youth Sports (HAYS) Study is to determine both negative and positive effects of sports on children and adolescents with a chronic disease or physical disability. METHODS: In this cross-sectional study differences will be compared in regards to physical and psychosocial health, cognitive functioning, school performance, daily physical activity and injuries between children and adolescents with a chronic disease or physical disability who participate in sports and those who do not. Children and adolescents, both ambulatory and wheelchair dependent, in the age of 10-19 years with a physical disability or chronic disease will be included. "Sports" is defined as participation in an organized sport at least two times a week for a duration of 3 months or more prior to the assessment. Parametric and non-parametric statistics will be used to determine the differences between the two groups. DISCUSSION: This study provides insight in the effects of sports participation in relation to health, psychosocial functioning, physical activity and school performance in children and adolescents (10-19 years) with a chronic disease or physical disability. Results will guide healthcare professionals working with these children to better guide this population in reaching optimal levels of health and physical activity levels.