Vergelijking van de sportdeelname in de 25 landen van de Europese Unie, met een systematisch overzicht van de beschikbare sportparticipatiegegevens per land. Ook besteedt het boek aandacht aan de 'key drivers' van sportparticipatie en aan de kansen en valkuilen van beleidsinterventies gericht op verhoging van de sportparticipatie.
Background to the problem Dutch society demonstrates a development which is apparent in many societies in the 21st century; it is becoming ethnically heterogeneous. This means that children who are secondlanguage speakers of Dutch are learning English, a core curriculum subject, through the medium of the Dutch language. Research questions What are the consequences of this for the individual learner and the class situation?Is a bi-lingual background a help or a hindrance when acquiring further language competences. Does the home situation facilitate or impede the learner? Additionally, how should the TEFL professional respond to this situation in terms of methodology, use of the Dutch language, subject matter and assessment? Method of approach A group of ethnic minority students at Fontys University of Professional Education was interviewed. The interviews were subjected to qualitative analysis. To ensure triangulation lecturers involved in teaching English at F.U.P.E. were asked to fill in a questionnaire on their teaching approach to Dutch second language English learners. Thier response was quantitatively and qualitatively analysed. Findings and conclusions The students encountered surprisingly few problems. Their bi-lingualism and home situation were not a constraint in their English language development. TEFL professionals should bear the heterogeneous classroom in mind when developing courses and lesson material. The introduction to English at primary school level and the assessment of DL2 learners require further research.
Background: Profiling the plant root architecture is vital for selecting resilient crops that can efficiently take up water and nutrients. The high-performance imaging tools available to study root-growth dynamics with the optimal resolution are costly and stationary. In addition, performing nondestructive high-throughput phenotyping to extract the structural and morphological features of roots remains challenging. Results: We developed the MultipleXLab: a modular, mobile, and cost-effective setup to tackle these limitations. The system can continuously monitor thousands of seeds from germination to root development based on a conventional camera attached to a motorized multiaxis-rotational stage and custom-built 3D-printed plate holder with integrated light-emitting diode lighting. We also developed an image segmentation model based on deep learning that allows the users to analyze the data automatically. We tested the MultipleXLab to monitor seed germination and root growth of Arabidopsis developmental, cell cycle, and auxin transport mutants non-invasively at high-throughput and showed that the system provides robust data and allows precise evaluation of germination index and hourly growth rate between mutants. Conclusion: MultipleXLab provides a flexible and user-friendly root phenotyping platform that is an attractive mobile alternative to high-end imaging platforms and stationary growth chambers. It can be used in numerous applications by plant biologists, the seed industry, crop scientists, and breeding companies.
LINK