Learning objects are bits of learning content. They may be reused 'as is' (simple reuse) or first be adapted to a learner's particular needs (flexible reuse). Reuse matters because it lowers the development costs of learning objects, flexible reuse matters because it allows one to address learners' needs in an affordable way. Flexible reuse is particularly important in the knowledge economy, where learners not only have very spefic demands but often also need to pay for their own further education. The technical problems to simple and flexible are rapidly being resolved in various learning technology standardisation bodies. This may suggest that a learning object economy, in which learning objects are freely exchanged, updated and adapted, is about to emerge. Such a belief, however, ignores the significant psychological, social and organizational barriers to reuse that still abound. An inventory of these problems is made and possible ways to overcome them are discussed.
Computers are promising tools for providing educational experiences that meet individual learning needs. However, delivering this promise in practice is challenging, particularly when automated feedback is essential and the learning extends beyond using traditional methods such as writing and solving mathematics problems. We hypothesize that interactive knowledge representations can be deployed to address this challenge. Knowledge representations differ markedly from concept maps. Where the latter uses nodes (concepts) and arcs (links between concepts), a knowledge representation is based on an ontology that facilitates automated reasoning. By adjusting this reasoning towards interacting with learners for the benefit of learning, a new class of educational instruments emerges. In this contribution, we present three projects that use an interactive knowledge representation as their foundation. DynaLearn supports learners in acquiring system thinking skills. Minds-On helps learners to deepen their understanding of phenomena while performing experiments. Interactive Concept Cartoons engage learners in a science-based discussion about controversial topics. Each of these approaches has been developed iteratively in collaboration with teachers and tested in real classrooms, resulting in a suite of lessons available online. Evaluation studies involving pre-/post-tests and action-log data show that learners are easily capable of working with these educational instruments and that the instruments thus enable a semi-automated approach to constructive learning.
This paper presents three qualitative models that were developed for the Stargazing Live! program. This program consists of a mobile planetarium that aims to inspire and motivate learners using real telescope data during the experience. To further consolidate the learning experience three lessons are available that teachers can use as follow up activities with their learners. The lessons implement a pedagogical approach that focuses on learning by creating qualitative models with the aim to have learners learn subject specific concepts as well as generic systems thinking skills. The three lessons form an ordered set with increasing complexity and were developed in close collaboration with domain experts.