The estimation of the pose of a differential drive mobile robot from noisy odometer, compass and beacon distance measurements is studied. The estimation problem, which is a state estimation problem with unknown input, is reformulated into a state estimation problem with known input and a process noise term. A heuristic sensor fusion algorithm solving this state-estimation problem is proposed and compared with the extended Kalman filter solution and the Particle Filter solution in a simulation experiment. https://doi.org/10.4018/IJAIML.2020010101 https://www.linkedin.com/in/john-bolte-0856134/
DOCUMENT
Deploying robots from indoor to outdoor environments (vise versa) with stable and accurate localization is very important for companies to secure the utilization in industrial applications such as delivering harvested fruits from plantations, deploying/docking, navigating under solar panels, passing through tunnels/underpasses and parking in garages. This is because of the sudden changes in operational conditions such as receiving high/low-quality satellite signals, changing field of view, dealing with lighting conditions and addressing different velocities. We observed these limitations especially in indoor-outdoor transitions after conducting different projects with companies and obtaining inaccurate localization using individual Robotics Operating Systems (ROS2) modules. As there are rare commercial solutions for IO-transitions, AlFusIOn is a ROS2-based framework aims to fuse different sensing and data-interpretation techniques (LiDAR, Camera, IMU, GNSS-RTK, Wheel Odometry, Visual Odometry) to guarantee the redundancy and accuracy of the localization system. Moreover, maps will be integrated to robustify the performance and ensure safety by providing geometrical information about the transitioning structures. Furthermore, deep learning will be utilized to understand the operational conditions by labeling indoor and outdoor areas. This information will be encoded in maps to provide robots with expected operational conditions in advance and beyond the current sensing state. Accordingly, this self-awareness capability will be incorporated into the fusion process to control and switch between the localization techniques to achieve accurate and smooth IO-transitions, e.g., GNSS-RTK will be deactivated during the transition. As an urgent and unique demand to have an accurate and continuous IO-transition towards fully autonomous navigation/transportation, Saxion University and the proposal’s partners are determined to design a commercial and modular industrial-based localization system with robust performance, self-awareness about the localization capabilities and less human interference. Furthermore, AlFusIOn will intensively collaborate with MAPS (a RAAKPRO proposed by HAN University) to achieve accurate localization in outdoor environments.
The increase in the number and complexity of crime activities in our nation together with shortage in human resources in the safety and security domain is putting extra pressure on emergency responders. The emergency responders are constantly confronted with sophisticated situations that urgently require professional, safe, and rapid handling to contain and conclude the situation to minimize the danger to public and the emergency responders. Recently, Dutch emergency responders have started to experiment with various types of robots to improve the responsiveness and the effectiveness of their responses. One of these robots is the Boston Dynamic’s Spot Robot Dog, which is primarily appealing for its ability to move in difficult terrains. The deployment of the robot in real emergencies is at its infancy. The main challenge that the robot dog operators are facing is the high workload. It requires the full attention to operate the robot itself. As such, the professional acts entirely as a robot operator rather than a domain expert that critically examines and addresses the main safety problems at hand. Therefore, there is an urgent request from these emergency response professionals to develop and integrate key technologies that enable the robot dog to operate more autonomously. In this project, we explore on how to increase the autonomy level of the robot dog in order to reduce the workload of the operator, and eventually help the operator remain domain expert. Therefore, we will explore the ability of the robot to autonomously 3D-map unknown confined areas. The results of this project will lead to new practical knowledge and a follow-up project that will focus on further developing the technologies that increase the autonomy of the robot for eventual deployment in operational environments. This project will also have direct contribution to education through involvement of students and lecturers.