Smallholders are a substantial part of the oil palm sector and thus key to achieve more sustainable production. However, so far their yields remain below potential. The Roundtable on Sustainable Oil Palm (RSPO) aims to include smallholders in sustainability certification to strengthen rural livelihoods and reduce negative environmental impacts. This study aims to determine if and how certified smallholders perform differently from their non-certified counterparts in terms of management practices and yields, and to what extend this is related to RSPO certification.
MULTIFILE
Our current dependency on the oil and gas (O&G) industry for economic development and social activities necessitates research into the sustainability of the industry's supply chains. At present, studies on sustainable supply chain management (SSCM) practices in the industry do not include firm-internal factors that affect the sustainability strategies employed by different functional areas of its supply chains. Our study aims to address this gap by identifying the relevant internal factors and exploring their relationship with SSCM strategies. Specifically, we discuss the commitment to and preparedness for sustainable practices of companies that operate in upstream and downstream O&G supply chain. We study the impact of these factors on their sustainability strategies of four key supply chain functions: supplier management, production management, product stewardship and logistics management. The analyses of data collected through a survey among 81 companies show that management preparedness may enhance sustainable supply chain strategies in the O&G industry more than commitment does. Among the preparedness measures, management of supply chain operational risks is found to be vital to the sustainability of all supply chain functions except for production management practices. The findings also highlight the central importance of supplier and logistics management to the achievement of sustainable O&G supply chains. Companies must also develop an organizational culture that encourages, for example, team collaboration and proactive behaviour to finding innovative sustainability solutions in order to translate commitment to sustainable practices into actions that can produce actual difference to their SSCM practices.
DOCUMENT
The Andean lupin (Lupinus mutabilis) is one of the lost crops of Incas and has been grown in South America and as a food crop for thousands of years. The seeds are the main source of commercial value regarding the high content of oil (about 20%), protein (about 43%) and carbohydrates (about 33%). A European Union H2020 project, LIBBIO, aims to develop and optimize the breeding and cropping of the Andean lupin in the Europe, and to process the lupin seeds for new and high-value products for consumers and for incorporation into otherproducts. This study works at optimizing the oil extraction from the lupin seeds using supercritical carbon dioxide (scCO2), which has been tested for lupin oil extraction and is advantageous over organic extractants due to the mild operating temperature, costeffectiveness, nontoxicity, and easy post-separation.In the study designed by response surface methodology, the operating pressure,temperature, scCO2 flowrate, and sample mesh size, were investigated on their effect on the oil extraction efficiency. The pressure, scCO2 flowrate and mesh size were found to affect the extraction efficiency significantly. The higher the pressure and the smaller the mesh, the more oil was extracted over a specific period. Optimally about 85% of the oil was extracted by scCO2 compared with conventional Soxhlet extraction using hexane as the extractant. Oleicacid (46%) and Linoleic acid (32%) are the two main fatty acids in the extracted oil. About 80% of the fatty acids are unsaturated. The stearic acid is one of the main saturated fatty acids, which has relatively positive effects on human health to others. The pressure was found to significantly affect the fractions of the saturated and unsaturated fatty acids. The content of tocopherols in the extracted oil ranged from 1 to 20 mg/100g oil, which is comparable withliterature value.
DOCUMENT
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Plastic products are currently been critically reviewed due to the growing awareness on the related problems, such as the “plastic soup”. EU has introduced a ban for a number of single-use consumer products and fossil-based polymers coming in force in 2021. The list of banned products are expected to be extended, for example for single-use, non-compostable plastics in horticulture and agriculture. Therefore, it is crucial to develop sustainable, biodegradable alternatives. A significant amount of research has been performed on biobased polymers. However, plastics are made from a polymer mixed with other materials, additives, which are essential for the plastics production and performance. Development of biodegradable solutions for these additives is lacking, but is urgently needed. Biocarbon (Biochar), is a high-carbon, fine-grained residue that is produced through pyrolysis processes. This natural product is currently used to produce energy, but the recent research indicate that it has a great potential in enhancing biopolymer properties. The biocarbon-biopolymer composite could provide a much needed fully biodegradable solution. This would be especially interesting in agricultural and horticultural applications, since biocarbon has been found to be effective at retaining water and water-soluble nutrients and to increase micro-organism activity in soil. Biocarbon-biocomposite may also be used for other markets, where biodegradability is essential, including packaging and disposable consumer articles. The BioADD consortium consists of 9 industrial partners, a branch organization and 3 research partners. The partner companies form a complementary team, including biomass providers, pyrolysis technology manufacturers and companies producing products to the relevant markets of horticulture, agriculture and packaging. For each of the companies the successful result from the project will lead to concrete business opportunities. The support of Avans, University of Groningen and Eindhoven University of Technology is essential in developing the know-how and the first product development making the innovation possible.
The Cashing Cashew project focuses on isolation and purification of Cashew Nut Shell Liquid (CNSL) from Cashew Nut Shells (CNS) in order to fully utilize this valuable by-product of the cashew nut production. Global cashew nut production is about 4 million mt/ tons/yr. Of the cashew nut, about 70 % is shell that is removed in processing and currently typically burned as a dirty and inefficient fuel or discarded as waste. This is not only creating an environmental issue but also wasting valuable by-products. The shell contains circa 20-30 % brown viscous liquid, Cashew Nut Shell Liquid (CNSL). This natural resin contains valuable chemical components, for example, cardanol, cardol, and anacardic acid. CNSL and its derivatives have several industrial uses as for example biobased additives, polymeric building blocks, and biodiesel. Part of the CNSL can be extracted during the roasting process prior to separating the shell and nut kernel. The shell waste still has a high CNSL concentration that can be isolated by solvents or pressing (expeller). Expeller process is simple and not capital-intensive; therefore it is commonly used. The main disadvantages of the method are the high energy consumption and that 3-5 % oil remains in the press-cake producing harmful gases in burning. Also, the resulting cake is too dense to be further processed to charcoal or other useful application. The objective of this project is to study the purification of the CNSL obtained from pyrolytic isolation to find the most efficient way of making use of the CNSL oil and the total Cashew Nut Shell biomass. An initial evaluation of potential applications is also performed.