Studying images on social media introduces several challenges that relate to the size of datasets and the different meaning-making grammars of social visuality; or as aptly pointed out by others in the field, it means ‘studying the qualitative on a quantitative scale’. Although cultural analytics provides an automated process through which patterns can be detected in large numbers of images, this methodology doesn’t account for other modalities of the image than the image itself. However, images circulating social media can (and should) be analyzed on the level of their audience as the latter is co-creating the meaning of images. Bridging the study of platform affordances and affect theory, this paper presents a novel methodology that repurposes Facebook Reactions to infer collective attitudes and performative emotional expressions vis á vis images shared on the large Syrian Revolution Network public page (+2M). We found visual patterns that co-occur with certain collective combinations of buttons, displaying how socio-technical features shape the discursive frameworks of online publics.
MULTIFILE
31-12-2019In 2015, the Object Management Group published the Decision Model and Notation with the goal to structure and connect business processes, decisions and underlying business logic. Practice shows that several vendors adopted the DMN standard and (started to) integrate the standard with their tooling. However, practice also shows that there are vendors who (consciously) deviate from the DMN standard while still trying to achieve the goal DMN is set out to reach. This research aims to 1) analyze and benchmark available tooling and their accompanied languages according to the DMN-standard and 2) understand the different approaches to modeling decisions and underlying business logic of these vendor specific languages. We achieved the above by analyzing secondary data. In total, 22 decision modelling tools together with their languages were analyzed. The results of this study reveal six propositions with regards to the adoption of DMN with regards to the sample of tools. These results could be utilized to improve the tools as well as the DMN standard itself to improve adoption. Possible future research directions comprise the improvement of the generalizability of the results by including more tools available and utilizing different methods for the data collection and analysis as well as deeper analysis into the generation of DMN directly from tool-native languages.
We give a refinement of the well known business model canvas by Osterwalder and Pigneur by splitting the basic blocks into further subblocks to reduce confusion and increase its expressive power. The splitting is used in an online tool which in addition comes with a set of questions to further structure the business modelling process and help doing thought experiments.