Since 2000, all Dutch Universities of Professional Education are confronted with three major renewals. The first was the European agreement to implement the Bachelor-Master system in Higher Education. The second was the strong tendence to renew eduction towards Competence Based Education. The third renewal came from the decision of the ministery of Education to contract lectures (lectoren) and research networks (kenniskringen) to improve research competences among students. Basic idea behind the latest renewal was that if students from Universities of Professional Education bring in more knowledge in companies, during and after their study, this will stimulate the innovative power of Dutch small and medium enterprices (SME’s). Educational developers have been very bussy with these renewals. Under the cloak of national assurance guidelines and external panels of inspection many educational developers automatically tended to use the instrumental paradigm for many design contexts. In accordance with the research of Gustafson (1993) and Richey (1993) we raised questions about the relevance of the instrumental paradigm for educational design contexts, because often the means-end thinking of the instrumental approach have seemed to be out of place. This research project by Lappia, De Boer & Van Rennes took place in 2006 at INHOLLAND university of professional education in the western part of The Netherlands with four pilots at School of Technology, Social Work, Education and Economics. The researchers started from the assumption that improving competence-based internships could not been based on an instrumental paradigma, because of the lack of absolute standards and the need to support deliberation among stakeholders. The Design Science Approach of Van Aken (2004) and Andriessen (2004) was been used to reveal field-tested and grounded technological rules as design specifications for improvement tools. Beside that the research project used the communicative paradigm (Visscher-Voerman & Gustafson, 2004) to reach consensus among the practitioners, who accompanion students during their internships in organisations in order to achieve a growth of competences in the choosen working field. Participants in the research project were employees of the School of Education, The School of Technology and the School of Economics, the department of Education, Quality, Research and development (OKR). Conditions for participating in the project were that the Schools recognized the problems with implementing Competence Based Internship and the School had to set the employees whe participated in the project free for half a day during the project. The Schools as stakeholders in the project were primary interested in solution of their practical problem (practical stream). The department of Education, Quality, Research and development was interested in solution of the pratical problem for dissemination reasons, but would also learn new strategies for implementation (knowledge stream). Therefore was choosen to follow the Design Science Research Approach.
Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from 1994 to 2011. The integrated curricula were categorized according to a taxonomy of integration types synthesized from the literature. The characteristics that we deemed important were related to learning outcomes and success/fail factors. A focus group was formed to facilitate the process of analysis and to test tentative conclusions. We concluded that the levels in our taxonomy were linked to (a) student knowledge and skills, the enthusiasm generated among students and teachers, and the teacher commitment that was generated; and (b) the teacher commitment needed, the duration of the innovation effort, the volume and comprehensiveness of required teacher professional development, the necessary teacher support, and the effort needed to overcome tensions with standard curricula. Almost all projects were effective in increasing the time spent on science at school. Our model resolves Czerniac’s definition problem of integrating curricula in a productive manner, and it forms a practical basis for decision-making by making clear what is needed and what output can be expected when plans are being formulated to implement integrated education.
Thinking back and forth between observing physical phenomena and developing scientific ideas, also known as hands-on and minds-on learning, is essential for the development of scientific reasoning in primary science education. In the Netherlands, inquiry-based learning is advocated as the preferred teaching method. However, most teachers lack time and sufficient pedagogical content knowledge to adequately provide the teaching required for this. To address this problem, we designed and evaluated science and technology lessons, consisting of hands-on experiments combined with interactive diagrams, aimed at scaffolding primary school students (9–12 years) in the development of their scientific reasoning. Our proof-of-concept uses an online application, that lets students work through the lessons while alternating hands-on and minds-on activities. A study was carried out (n = 490) showing that most students successfully complete the lessons within a standard lesson timeframe. The approach enables students to effectively apply several types of scientific reasoning and to do so more autonomously than in traditional science classes.