Objective: Despite the increasing availability of eRehabilitation, its use remains limited. The aim of this study was to assess factors associated with willingness to use eRehabilitation. Design: Cross-sectional survey. Subjects: Stroke patients, informal caregivers, health-care professionals. Methods: The survey included personal characteristics, willingness to use eRehabilitation (yes/no) and barri-ers/facilitators influencing this willingness (4-point scale). Barriers/facilitators were merged into factors. The association between these factors and willingness to use eRehabilitation was assessed using logistic regression analyses. Results: Overall, 125 patients, 43 informal caregivers and 105 healthcare professionals participated in the study. Willingness to use eRehabilitation was positively influenced by perceived patient benefits (e.g. reduced travel time, increased motivation, better outcomes), among patients (odds ratio (OR) 2.68; 95% confidence interval (95% CI) 1.34–5.33), informal caregivers (OR 8.98; 95% CI 1.70–47.33) and healthcare professionals (OR 6.25; 95% CI 1.17–10.48). Insufficient knowledge decreased willingness to use eRehabilitation among pa-tients (OR 0.36, 95% CI 0.17–0.74). Limitations of the study include low response rates and possible response bias. Conclusion: Differences were found between patients/informal caregivers and healthcare professionals. Ho-wever, for both groups, perceived benefits of the use of eRehabilitation facilitated willingness to use eRehabili-tation. Further research is needed to determine the benefits of such programs, and inform all users about the potential benefits, and how to use eRehabilitation. Lay Abstract The use of digital eRehabilitation after stroke (e.g. in serious games, e-consultation and education) is increasing. However, the use of eRehabilitation in daily practice is limited. As a first step in increasing the use of eRehabilitation in stroke care, this study examined which factors influence the willingness of stroke patients, informal caregivers and healthcare professionals to use eRehabilitation. Beliefs about the benefits of eRehabilitation were found to have the largest positive impact on willingness to use eRehabilitation. These benefits included reduced travel time, increased adherence to therapy or motivation, and better health outcomes. The willingness to use eRehabilitation is limited by a lack of knowledge about how to use eRehabilitation.
MULTIFILE
(‘Co’-)Designing for healthy behaviour greatly benefits from integrating insights about individual behaviour and systemic influences. This study reports our experiences in using insights about individual and systemic determinants of behaviour to inform a large co-design project. To do so, we used two design tools that encourage focusing on individual determinants (Behavioural Lenses Approach) and social / systemic aspects of behaviour (Socionas). We performed a qualitative analysis to identify 1) when and how the team applied the design tools, and 2) how the tools supported or obstructed the design process. The results show that both tools had their distinctive uses during the process. Both tools improved the co-design process by deepening the conversations and underpinnings of the prototypes. Using the Behavioural Lenses under the guidance of a behavioural expert proved most beneficial. Furthermore, the Socionas showed the most potential when interacting with stakeholders, i.c. parents and PPTs.
MULTIFILE
Background: Computed tomography (CT) is one of the most used modalities for diagnostics in paediatric populations, which is a concern as it also delivers a high patient dose. Research has focused on developing computer algorithms that provide better image quality at lower dose. The iterative reconstruction algorithm Sinogram-Affirmed Iterative Reconstruction (SAFIRE) was introduced as a new technique that reduces noise to increase image quality.Purpose: The aim of this study is to compare SAFIRE with the current gold standard, Filtered Back Projection (FBP), and assess whether SAFIRE alone permits a reduction in dose while maintaining image quality in paediatric head CT.Methods: Images were collected using a paediatric head phantom using a SIEMENS SOMATOMPERSPECTIVE 128 modulated acquisition. 54 images were reconstructed using FBP and 5 different strengths of SAFIRE. Objective measures of image quality were determined by measuring SNR and CNR. Visual measures of image quality were determined by 17 observers with different radiographic experiences. Images were randomized and displayed using 2AFC; observers scored the images answering 5 questions using a Likert scale.Results: At different dose levels, SAFIRE significantly increased SNR (up to 54%) in the acquired images compared to FBP at 80kVp (5.2-8.4), 110kVp (8.2-12.3), 130kVp (8.8-13.1). Visual image quality was higher with increasing SAFIRE strength. The highest image quality was scored with SAFIRE level 3and higher.Conclusion: The SAFIRE algorithm is suitable for image noise reduction in paediatric head CT. Our data demonstrates that SAFIRE enhances SNR while reducing noise with a possible reduction of dose of 68%.