Objective: To compare the effects of traditional mirror therapy (MT), a patient-centred teletreatment (PACT) and sensomotor exercises without a mirror on phantom limb pain (PLP). Design: Three-arm multicentre randomized controlled trial. Setting: Rehabilitation centres, hospital and private practices. Subjects: Adult patients with unilateral lower limb amputation and average PLP intensity of at least 3 on the 0–10 Numeric Rating Scale (NRS). Interventions: Subjects randomly received either four weeks of traditional MT followed by a teletreatment using augmented reality MT, traditional MT followed by self-delivered MT or sensomotor exercises of the intact limb without a mirror followed by self-delivered exercises. Main measures: Intensity, frequency and duration of PLP and patient-reported outcomes assessing limitations in daily life at baseline, 4 weeks, 10 weeks and 6 months. Results: In total, 75 patients received traditional MT (n = 25), teletreatment (n = 26) or sensomotor exercises (n = 24). Mean (SD) age was 61.1 (14.2) years and mean (SD) pain intensity was 5.7 (2.1) on the NRS. Effects of MT at four weeks on PLP were not significant. MT significantly reduced the duration of PLP at six months compared to the teletreatment (P = 0.050) and control group (P = 0.019). Subgroup analyses suggested significant effects on PLP in women, patients with telescoping and patients with a motor component in PLP. The teletreatment had no additional effects compared to self-delivered MT at 10 weeks and 6 months. Conclusion: Traditional MT over four weeks was not more effective than sensomotor exercises without a mirror in reducing PLP, although significant effects were suggested in some subgroups.
Background: Healthcare practitioner beliefs influence patients’ beliefs and health outcomes in musculoskeletal (MSK) pain. A validated questionnaire based on modern pain neuroscience assessing Knowledge and Attitudes ofPain (KNAP) was unavailable.Objectives: The aim of this study was to develop and test measurement properties of KNAP.Design: Phase 1; Development of KNAP reflecting modern pain neuroscience and expert opinion. Phase 2; a crosssectional and longitudinal study among Dutch physiotherapy students.Method: In the cross-sectional study (n = 424), internal consistency, structural validity, hypotheses testing, and Rasch analysis were examined. Longitudinal designs were applied to analyse test-retest reliability (n = 156), responsiveness, and interpretability (n = 76).Results: A 30-item KNAP was developed in 4 stages. Test-retest reliability: ICC (2,1) 0.80. Internal consistency: Cronbach’s α 0.80. Smallest Detectable Difference 90%: 4.99 (4.31; 5.75). Structural validity: exploratory factor analysis showed 2 factors. Hypotheses testing: associations with the Pain Attitudes and Beliefs Scale for Physiotherapists biopsychosocial subscale r = 0.60, with biomedical subscale r = 0.58, with the Neurophysiology of Pain Questionnaire r = 0.52. Responsiveness: 93% improved on KNAP after studying pain education. MinimalImportant Change: 4.84 (95%CI: 2.77; 6.91).Conclusions: The KNAP has adequate measurement properties. This new questionnaire could be useful to evaluate physiotherapy students’ knowledge and attitudes of modern pain neuroscience that could help to create awareness and evaluate physiotherapy education programs, and ultimately provide better pain management.
Background: In postoperative pain treatment patients are asked to rate their pain experience on a single uni-dimensional pain scale. Such pain scores are also used as indicator to assess the quality of pain treatment. However, patients may differ in how they interpret the Numeric Rating Scale (NRS) score. Objectives: This study examines how patients assign a number to their currently experienced postoperative pain and which considerations influence this process. Methods: A qualitative approach according to grounded theory was used. Twenty-seven patients were interviewed one day after surgery. Results: Three main themes emerged that influenced the Numeric Rating Scale scores (0–10) that patients actually reported to professionals: score-related factors, intrapersonal factors, and the anticipated consequences of a given pain score. Anticipated consequences were analgesic administration—which could be desired or undesired—and possible judgements by professionals. We also propose a conceptual model for the relationship between factors that influence the pain rating process. Based on patients’ score-related and intrapersonal factors, a preliminary pain score was ‘‘internally’’ set. Before reporting the pain score to the healthcare professional, patients considered the anticipated consequences (i.e., expected judgements by professionals and anticipation of analgesic administration) of current Numeric Rating Scale scores. Conclusions: This study provides insight into the process of how patients translate their current postoperative pain into a numeric rating score. The proposed model may help professionals to understand the factors that influence a given Numeric Rating Scale score and suggest the most appropriate questions for clarification. In this way, patients and professionals may arrive at a shared understanding of the pain score, resulting in a tailored decision regarding the most appropriate treatment of current postoperative pain, particularly the dosing and timing of opioid administration.