Purpose: Classification is a defining factor for competition in wheelchair sports, but it is a delicate and time-consuming process with often questionable validity. New inertial sensor-based measurement methods applied in match play and field tests allow for more precise and objective estimates of the impairment effect on wheelchair-mobility performance. The aim of the present research was to evaluate whether these measures could offer an alternative point of view for classification. Methods: Six standard wheelchair-mobility performance outcomes of different classification groups were measured in match play (n = 29), as well as best possible performance in a field test (n = 47). Results: In match results, a clear relationship between classification and performance level is shown, with increased performance outcomes in each adjacent higher-classification group. Three outcomes differed significantly between the low- and mid-classified groups, and 1, between the mid- and high-classified groups. In best performance (field test), there was a split between the low- and mid-classified groups (5 out of 6 outcomes differed significantly) but hardly any difference between the mid- and high-classified groups. This observed split was confirmed by cluster analysis, revealing the existence of only 2 performance-based clusters. Conclusions: The use of inertial sensor technology to obtain objective measures of wheelchair-mobility performance, combined with a standardized field test, produced alternative views for evidence-based classification. The results of this approach provide arguments for a reduced number of classes in wheelchair basketball. Future use of inertial sensors in match play and field testing could enhance evaluation of classification guidelines, as well as individual athlete performance. DOI: https://doi.org/10.1123/ijspp.2017-0326 LinkedIn: https://www.linkedin.com/in/rienkvdslikke/ https://www.linkedin.com/in/moniqueberger/ https://www.linkedin.com/in/annemarie-de-witte-9582b154/
The aim of this explorative study was to determine the key inertial measurement unit-based wheelchair mobility performance components during a wheelchair tennis match. A total of 64 wheelchair tennis matches were played by 15 wheelchair tennis players (6 women, 5 men, 4 juniors). All individual tennis wheelchairs were instrumented with inertial measurement units, two on the axes of the wheels and one on the frame. A total of 48 potentially relevant wheelchair tennis outcome variables were initially extracted from the sensor signals, based on previous wheelchair sports research and the input of wheelchair tennis experts (coaches, embedded scientists). A principal component analysis was used to reduce this set of variables to the most relevant outcomes for wheelchair tennis mobility. Results showed that wheelchair mobility performance in wheelchair tennis can be described by six components: rotations to racket side in (1) curves and (2) turns; (3) linear accelerations; (4) rotations to non-racket side in (4) turns and (5) curves; and finally, (6) linear velocities. One or two outcome variables per component were selected to allow an easier interpretation of results. These key outcome variables can be used to adequately describe the wheelchair mobility performance aspect of wheelchair tennis during a wheelchair tennis match and can be monitored during training.