In cases of sexual assault, the interpretation of biological traces on clothing, and particularly undergarments, may be complex. This is especially so when the complainant and defendant interact socially, for instance as (ex-)partners or by co-habitation. Here we present the results from a study where latent male DNA on female worn undergarments is recovered in four groups with different levels of male-female social interaction. The results conform to prior expectation, in that less interaction tend to result in less male DNA on undergarments. We explore the use of these experimental data for evaluative reporting given activity level propositions in a mock case scenario. We show how the selection of different populations to represent the social interaction between complainant and defendant may affect the strength of the evidence. We further show how datasets of limited size can be used for robust activity level evaluative reporting.
MULTIFILE
The ever-increasing electrification of society has been a cause of utility grid issues in many regions around the world. With the increased adoption of electric vehicles (EVs) in the Netherlands, many new charge points (CPs) are required. A common installation practice of CPs is to group multiple CPs together on a single grid connection, the so-called charging hub. To further ensure EVs are adequately charged, various control strategies can be employed, or a stationary battery can be connected to this network. A pilot project in Amsterdam was used as a case study to validate the Python model developed in this study using the measured data. This paper presents an optimisation of the battery energy storage capacity and the grid connection capacity for such a P&R-based charging hub with various load profiles and various battery system costs. A variety of battery control strategies were simulated using both the optimal system sizing and the case study sizing. A recommendation for a control strategy is proposed.