Introduction: Success of e-health relies on the extent to which the related technology, such as the electronic device, is accepted by its users. However, there has been limited research on the patients’ perspective on use of e-health-related technology in rehabilitation care. Objective: To explore the usage of common electronic devices among rehabilitation patients with access to email and investigate their preferences regarding their usage in rehabilitation. Methods: Adult patients who were admitted for inpatient and/or outpatient rehabilitation and were registered with an email address were invited to complete an electronic questionnaire regarding current and preferred use of information and communication technologies in rehabilitation care. Results: 190 out of 714 invited patients completed the questionnaire, 94 (49%) female, mean age 49 years (SD 16). 149 patients (78%) used one or more devices every day, with the most frequently used devices were: PC/laptop (93%), smartphone (57%) and tablet (47%). Patients mostly preferred to use technology for contact with health professionals (mean 3.15, SD 0.79), followed by access to their personal record (mean 3.09, SD 0.78) and scheduling appointments with health professionals (mean 3.07, SD 0.85). Conclusion: Most patients in rehabilitation used one or more devices almost every day and wish to use these devices in rehabilitation. https://doi.org/10.1080/17483107.2017.1358302
MULTIFILE
The aim of this study was to describe patients' experiences of, and preferences for, surgical wound care discharge education and how these experiences predicted their ability to self-manage their surgical wounds. A telephone survey of 270 surgical patients was conducted across two hospitals two weeks after discharge. Patients preferred verbal (n = 255, 94.8%) and written surgical wound education (n = 178, 66.2%) from medical (n = 229, 85.4%) and nursing staff (n = 211, 78.7%) at discharge. The most frequent education content that patients received was information about follow-up appointments (n = 242, 89.6%) and who to contact in the community with wound care concerns (n = 233, 86.6%). Using logistic regression, patients who perceived that they participated in surgical wound care decisions were 6.5 times more likely to state that they were able to manage their wounds at home. Also, patients who agreed that medical and/or nursing staff discussed wound pain management were 3.1 times more likely to report being able to manage their surgical wounds at home. Only 40% (107/270) of patients actively participated in wound-related decision-making during discharge education. These results uncovered patient preferences, which could be used to optimise discharge education practices. Embedding patient participation into clinical workflows may enhance patients' self-management practices once home.
Background: Patient Reported Experience Measures are promoted to be used as an integrated measurement approach in which outcomes are used to improve individual care (micro level), organisational quality (meso level) and external justification (macro level). However, a deeper understanding of implementation issues of these measures is necessary. The narrative Patient Reported Experience Measure “Dit vind ik ervan!” (English “How I feel about it!”) is used in the Dutch disability care sector, but insight into its’ current use is lacking. We aimed to provide insight into experiences with the implementation and current ways of working with “Dit vind ik ervan!” as an integrated measurement strategy. A descriptive qualitative study was done at a disability care organisation. Data were collected by nine documentations, seven observations, 11 interviews and three focus groups. We applied deductive content analysis using the Consolidated Framework for Implementation Research as a framework. Results: Our analysis revealed facilitators and barriers for the implementation of “Dit vind ik ervan!”. We found most barriers at the micro level. Professionals and clients appreciated the measure’s narrative approach, but struggled to perform it with communication vulnerable clients. Some clients, professionals and team leaders were unfamiliar with the measure’s aim and benefit. On the meso level, implementation was done top-down, and the management’s vision using the measure as an integrated measurement approach was insufficiently shared throughout the organisation. Conclusions: Our study shows that Patient Reported Experience Measures have the potential to be used as an integrated measurement strategy. Yet, we found barriers at the micro level, which might have influenced using the measurement outcomes at the meso and macro level. Tailored implementation strategies, mostly focusing on designing and preparing the implementation on themicro level, need to be developed in co-creation with all stakeholders.
A feeling of worry, anxiety, loneliness and anticipation are commonplace in both medical and non-medical arenas such as elderly care. An innovative solution such as the ‘simple and effective’ comfyhand would offer better patient care and improved care efficiency with a high chance of long-term, economic efficiency. ComfyHand is a start-up in the healthcare sector that aims to develop sustainable products to improve patient wellbeing in healthcare settings. It does this by emulating the experience of holding a hand which gives the person comfort and support in moments where real human contact is not possible. Right now the comfyhand is in the development phase, working on several prototypes for test trials in elderly care and hospitals. In this project we want to explore the use of 3D printing for producing a comfyhand. Desired properties for the prototype include optimal heat transfer, softness, regulation of sweat, durability and sustainability. The goal of this study is to develop a prototype to test in a trial with patients within Envida, a care centre. The trial itself is out of scope of this project. This proposal focuses on researching the material of choice and the processability. Building on knowledge gained in a previous Kiem GoChem project and a Use Case (Shape3Dup) of a currently running Raak MKB project (Enlighten) on 3D printing of breast prostheses, several materials, designs and printing parameters will be tested.
The project aims to improve palliative care in China through the competence development of Chinese teachers, professionals, and students focusing on the horizontal priority of digital transformation.Palliative care (PC) has been recognised as a public health priority, and during recent years, has seen advances in several aspects. However, severe inequities in the access and availability of PC worldwide remain. Annually, approximately 56.8 million people need palliative care, where 25.7% of the care focuses on the last year of person’s life (Connor, 2020).China has set aims for reaching the health care standards of the developed countries by 2030 through the Healthy China Strategy 2030, where one of the improvement areas in health care includes palliative care, thus continuing the previous efforts.The project provides a constructive, holistic, and innovative set of actions aimed at resulting in lasting outcomes and continued development of palliative care education and services. Raising the awareness of all stakeholders on palliative care, including the public, is highly relevant and needed. Evidence based practice guidelines and education are urgently required for both general and specialised palliative care levels, to increase the competencies for health educators, professionals, and students. This is to improve the availability and quality of person-centered palliative care in China. Considering the aging population, increase in various chronic illnesses, the challenging care environment, and the moderate health care resources, competence development and the utilisation of digitalisation in palliative care are paramount in supporting the transition of experts into the palliative care practice environment.General objective of the project is to enhance the competences in palliative care in China through education and training to improve the quality of life for citizens. Project develops the competences of current and future health care professionals in China to transform the palliative care theory and practice to impact the target groups and the society in the long-term. As recognised by the European Association for Palliative Care (EAPC), palliative care competences need to be developed in collaboration. This includes shared willingness to learn from each other to improve the sought outcomes in palliative care (EAPC 2019). Since all individuals have a right to health care, project develops person-centered and culturally sensitive practices taking into consideration ethics and social norms. As concepts around palliative care can focus on physical, psychological, social, or spiritual related illnesses (WHO 2020), project develops innovative pedagogy focusing on evidence-based practice, communication, and competence development utilising digital methods and tools. Concepts of reflection, values and views are in the forefront to improve palliative care for the future. Important aspects in project development include health promotion, digital competences and digital health literacy skills of professionals, patients, and their caregivers. Project objective is tied to the principles of the European Commission’s (EU) Digital Decade that stresses the importance of placing people and their rights in the forefront of the digital transformation, while enhancing solidarity, inclusion, freedom of choice and participation. In addition, concepts of safety, security, empowerment, and the promotion of sustainable actions are valued. (European Commission: Digital targets for 2030).Through the existing collaboration, strategic focus areas of the partners, and the principles of the call, the PalcNet project consortium was formed by the following partners: JAMK University of Applied Sciences (JAMK ), Ramon Llull University (URL), Hanze University of Applied Sciences (HUAS), Beijing Union Medical College Hospital (PUMCH), Guangzhou Health Science College (GHSC), Beihua University (BHU), and Harbin Medical University (HMU). As project develops new knowledge, innovations and practice through capacity building, finalisation of the consortium considered partners development strategy regarding health care, (especially palliative care), ability to create long-term impact, including the focus on enhancing higher education according to the horizontal priority. In addition, partners’ expertise and geographical location was also considered important to facilitate long-term impact of the results.Primary target groups of the project include partner country’s (China) staff members, teachers, researchers, health care professionals and bachelor level students engaging in project implementation. Secondary target groups include those groups who will use the outputs and results and continue in further development in palliative care upon the lifetime of the project.
Lightweight, renewable origin, mild processing, and facile recyclability make thermoplastics the circular construction materials of choice. However, in additive manufacturing (AM), known as 3D printing, mass adoption of thermoplastics lags behind. Upon heating into the melt, particles or filaments fuse first in 2D and successively in 3D, realizing unprecedented geometrical freedom. Despite a scientific understanding of fusion, industrial consortium experts are still confronted with inferior mechanical properties of fused weld interfaces in reality. Exemplary is early mechanical failure in patient-specific and biodegradable medical devices based on Corbion’s poly(lactides), and more technical constructs based on Mitsubishi’s poly(ethylene terephthalate), PET. The origin lies in contradictory low rate of polymer diffusion and entangling, and too high rate of crystallization that is needed to compensate insufficient entangling. Knowing that Zuyd University in close collaboration with Maastricht University has eliminated these contradictory time-scales for PLA-based systems, Corbion and Mitsubishi contacted Zuyd with the question to address and solve their problem. In previous research it has been shown that interfacial co-crystallization of alternating depositioned opposite stereo-specific PLA grades resulted in strengthening of the interface. To promote mass adoption of thermoplastics AM industries, the innovation question has been phrased as follows: What is a technically scalable route to induce toughness in additively manufactured thermoplastics? High mechanical performance translates into an intrinsic brittle to tough transition of stereocomplex reinforced AM products, focusing on fused deposition modeling. Taking the professional request on biocompatibility, engineering performance and scalability into account, the strategies in lowering the yield stress and/or increasing the network strength comprise (i) biobased and biocompatible plasticizers for stereocomplexed poly(lactide), (ii) interfacial co-crystallization of intrinsically tough polyester based materials formulations, and (iii) in-situ interfacial transesterification of recycled PET formulations.