The energy transition requires the transformation of communities and neighbourhoods. It will have huge ramifications throughout society. Many cities, towns and villages have put together ambitious visions about how to achieve e.g. energy neutrality, zero-emission or zero-impact. What is happening at the local level towards realizing these ambitions? In a set of case study’s we investigate the following questions: How are self-organized local energy initiatives performing their self-set tasks? What obstacles are present in the current societal set-up that can hinder decentralized energy production? In our cases local leadership, vision, level of communication and type of organisation are important factors of the strength of the ‘local network’. (Inter)national energy policy and existing energy companies largely determine the ‘global’ or outside network. Stronger regional and national support structures, as well as an enabling environment for decentralized energy production, are needed to make decentralized sustainable energy production a success.
Polyhydroxyalkanoates (PHAs) form a highly promising class of bioplastics for the transition from fossil fuel-based plastics to bio-renewable and biodegradable plastics. Mixed microbial consortia (MMC) are known to be able to produce PHAs from organic waste streams. Knowledge of key-microbes and their characteristics in PHA-producing consortia is necessary for further process optimization and direction towards synthesis of specific types of PHAs. In this study, a PHA-producing mixed microbial consortium (MMC) from an industrial pilot plant was characterized and further enriched on acetate in a laboratory-scale selector with a working volume of 5 L. 16S-rDNA microbiological population analysis of both the industrial pilot plant and the 5 L selector revealed that the most dominant species within the population is Thauera aminoaromatica MZ1T, a Gram-negative beta-proteobacterium belonging to the order of the Rhodocyclales. The relative abundance of this Thauera species increased from 24 to 40% after two months of enrichment in the selector-system, indicating a competitive advantage, possibly due to the storage of a reserve material such as PHA. First experiments with T. aminoaromatica MZ1T showed multiple intracellular granules when grown in pure culture on a growth medium with a C:N ratio of 10:1 and acetate as a carbon source. Nuclear magnetic resonance (NMR) analyses upon extraction of PHA from the pure culture confirmed polyhydroxybutyrate production by T. aminoaromatica MZ1T.
LINK