IntroductionThe driving pressure (ΔP) has an independent association with outcome in patients with acute respiratory distress syndrome (ARDS). INTELLiVENT-Adaptive Support Ventilation (ASV) is a closed-loop mode of ventilation that targets the lowest work and force of breathing.AimTo compare transpulmonary and respiratory system ΔP between closed-loop ventilation and conventional pressure controlled ventilation in patients with moderate-to-severe ARDS.MethodsSingle-center randomized cross-over clinical trial in patients in the early phase of ARDS. Patients were randomly assigned to start with a 4-h period of closed-loop ventilation or conventional ventilation, after which the alternate ventilation mode was selected. The primary outcome was the transpulmonary ΔP; secondary outcomes included respiratory system ΔP, and other key parameters of ventilation.ResultsThirteen patients were included, and all had fully analyzable data sets. Compared to conventional ventilation, with closed-loop ventilation the median transpulmonary ΔP with was lower (7.0 [5.0–10.0] vs. 10.0 [8.0–11.0] cmH2O, mean difference − 2.5 [95% CI − 2.6 to − 2.1] cmH2O; P = 0.0001). Inspiratory transpulmonary pressure and the respiratory rate were also lower. Tidal volume, however, was higher with closed-loop ventilation, but stayed below generally accepted safety cutoffs in the majority of patients.ConclusionsIn this small physiological study, when compared to conventional pressure controlled ventilation INTELLiVENT-ASV reduced the transpulmonary ΔP in patients in the early phase of moderate-to-severe ARDS. This closed-loop ventilation mode also led to a lower inspiratory transpulmonary pressure and a lower respiratory rate, thereby reducing the intensity of ventilation.Trial registration Clinicaltrials.gov, NCT03211494, July 7, 2017. https://clinicaltrials.gov/ct2/show/NCT03211494?term=airdrop&draw=2&rank=1.
MULTIFILE
In wheelchair rugby (WR) athletes with tetraplegia, wheelchair performance may be impaired due to (partial) loss of innervation of upper extremity and trunk muscles, and low blood pressure (BP). The objective was to assess the effects of electrical stimulation (ES)-induced co-contraction of trunk muscles on trunk stability, arm force/power, BP, and WR performance.
Of all patients in a hospital environment, trauma patients may be particularly at risk for developing (device-related) pressure ulcers (PUs), because of their traumatic injuries, immobility, and exposure to immobilizing and medical devices. Studies on device-related PUs are scarce. With this study, the incidence and characteristics of PUs and the proportion of PUs that are related to devices in adult trauma patients with suspected spinal injury were described. From January–December 2013, 254 trauma patients were visited every 2 days for skin assessment. The overall incidence of PUs was 28⋅3% (n = 72/254 patients). The incidence of device-related PUs was 20⋅1% (n = 51), and 13% (n = 33) developed solely device-related PUs. We observed 145 PUs in total of which 60⋅7% were related to devices (88/145). Device-related PUs were detected 16 different locations on the front and back of the body. These results show that the incidence of PUs and the proportion of device-related PUs is very high in trauma patients
Due to their diverse funding sources, theatres are under increasing pressure to demonstrate impact on society. The Raad voor Cultuur (2023) for example advised the secretary of state to include societal impact as an additional evaluation measure next to artistic value. Many theaters, such as the Chassé Theater and Parkstad Limburg Theaters, have reformulated their missions to focus on impact of performances on visitors. This is a profound transformation from merely selling tickets and filling seats, and requires new measurement instruments to monitor, manage, and improve impact. Currently available instruments are insufficient, and effective monitoring is crucial to larger future projects that theaters are currently planning to systematically broaden impacts of performances on their communities. The specific goal of this project is to empower theaters to monitor and improve impact by developing a brief experience impact questionnaire, taking existing data from student projects conducted at the Chassé Theater about performing arts experiences on one hand, and experience impact theory innovations on the other, as starting points. We will develop potential items to measure and benchmark against established measures of valued societal outcomes, such as subjective well-being and quality of life. These will be measured in questionnaires developed with project partners Chassé Theater and Parkstad Limburg Theaters and administered before and after performances across a wide range of genres. The resulting data will enable comparison of new questionnaire items with benchmarked measures of valued societal outcomes. The final product of the project will be a brief impact questionnaire, which within several brief self-report instruments and just a few minutes can effectively be used to quantify the impact of a performing arts experience. A workshop and practice-oriented article will make this questionnaire implementable, thereby mobilizing the key enabling methodology of monitoring and impact measurement in the performing arts sector.
Due to their diverse funding sources, theatres are under increasing pressure to demonstrate impact on society. The Raad voor Cultuur (2023) for example advised the secretary of state to include societal impact as an additional evaluation measure next to artistic value. Many theaters, such as the Chassé Theater and Parkstad Limburg Theaters, have reformulated their missions to focus on impact of performances on visitors. This is a profound transformation from merely selling tickets and filling seats, and requires new measurement instruments to monitor, manage, and improve impact. Currently available instruments are insufficient, and effective monitoring is crucial to larger future projects that theaters are currently planning to systematically broaden impacts of performances on their communities.The specific goal of this project is to empower theaters to monitor and improve impact by developing a brief experience impact questionnaire, taking existing data from student projects conducted at the Chassé Theater about performing arts experiences on one hand, and experience impact theory innovations on the other, as starting points. We will develop potential items to measure and benchmark against established measures of valued societal outcomes, such as subjective well-being and quality of life. These will be measured in questionnaires developed with project partners Chassé Theater and Parkstad Limburg Theaters and administered before and after performances across a wide range of genres. The resulting data will enable comparison of new questionnaire items with benchmarked measures of valued societal outcomes. The final product of the project will be a brief impact questionnaire, which within several brief self-report instruments and just a few minutes can effectively be used to quantify the impact of a performing arts experience. A workshop and practice-oriented article will make this questionnaire implementable, thereby mobilizing the key enabling methodology of monitoring and impact measurement in the performing arts sector.Societal issueThe specific goal of this project is to empower theaters to monitor and improve impact by developing a brief experience impact questionnaire, taking existing data about performing arts experiences on one hand, and experience impact theory innovations on the other, as starting points. Benefit to societyWe will develop potential items to measure and benchmark against established measures of valued societal outcomes, such as subjective well-being and quality of life. Collaborative partnersChassé Theater N.V., Parkstad Limburg Theaters N.V.
The postdoc candidate, Sondos Saad, will strengthen connections between research groups Asset Management(AM), Data Science(DS) and Civil Engineering bachelor programme(CE) of HZ. The proposed research aims at deepening the knowledge about the complex multidisciplinary performance deterioration prediction of turbomachinery to optimize cleaning costs, decrease failure risk and promote the efficient use of water &energy resources. It targets the key challenges faced by industries, oil &gas refineries, utility companies in the adoption of circular maintenance. The study of AM is already part of CE curriculum, but the ambition of this postdoc is that also AM principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop an AM material science line and will facilitate applied research experiences for students, in collaboration with engineering companies, operation &maintenance contractors and governmental bodies. Consequently, a new generation of efficient sustainability sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment being more sustainable with less CO2 footprint, with possible connections with other fields of study, such as Engineering, Economics &Chemistry. The project is also strongly contributing to the goals of the National Science Agenda(NWA), in themes of “Circulaire economie en grondstoffenefficiëntie”,”Meten en detecteren: altijd, alles en overall” &”Smart Industry”. The final products will be a framework for data-driven AM to determine and quantify key parameters of degradation in performance for predictive AM strategies, for the application as a diagnostic decision-support toolbox for optimizing cleaning &maintenance; a portfolio of applications &examples; and a new continuous learning line about AM within CE curriculum. The postdoc will be mentored and supervised by the Lector of AM research group and by the study programme coordinator(SPC). The personnel policy and job function series of HZ facilitates the development opportunity.