Climate change and changing land use challenge the livability and flood safety of Dutch cities. One option cities have to become more climate-proof is to increase infiltration of stormwater into soil through permeable pavement and thus reduce discharge of stormwater into sewer systems. To analyze the market receptivity for permeable pavements in the Netherlands, this article focuses on the perception of end-users towards key transition factors in the infrastructure transformation processes. Market receptivity was studied on two levels: (1) on the system level, by analyzing 20 key factors in the Dutch urban water sector that enable wider application of permeable pavements; and (2) on the technology level, by analyzing 12 key factors that explain why decision makers select permeable pavements or not. Results show that trust between cooperating partners was perceived as the system level key factor that needs to be improved most to facilitate the wider uptake of permeable pavements. Additionally, the association of end-users with permeable pavement, particularly their willingness to apply these technologies and their understanding of what kinds of benefits these technologies could bring, was regarded the most important receptivity attribute. On the technology level, the reliability of permeable pavement was regarded as the most important end-user consideration for selecting this technology.
DOCUMENT
Permeable pavements are specifically designed to promote the infiltration of stormwater through the paving surface in order to reduce run-off volumes and to improve water quality by removing sediment and other pollutants. However, research has shown that permeable pavements can become clogged over time and this reduces their infiltration capacity. In order to assess the infiltration of permeable pavements, a variety of infiltration test procedures have been utilised in the past. However, the results have generally been inconsistent, and have shown a large variation in the range of infiltration rates measured. This paper evaluates the performance of two new experimental test methods developed in the Netherlands to more accurately determine the surface infiltration rate of existing permeable pavement installations. The two methods were the falling head full-scale method and the constant head full-scale method. Both of the new methods involved inundating a large area of the pavement in order to determine the infiltration rate through the pavement surface. Double ring infiltrometer tests were also performed to enable a comparison of the results. The study found that the new falling head full-scale testing method produced the most accurate results.
DOCUMENT
Infiltrating pavements are potentially effective climate adaptation measures to counteract arising challenges related to flooding and drought in urban areas. However, they are susceptible to clogging causing premature degradation. As part of the Dutch Delta Plan, Dutch municipalities were encouraged to put infiltrating pavements into practice. Disappointing experiences made a significant number of municipalities decide, however, to stop further implementation. A need existed to better understand how infiltrating pavements function in practice. Through 81 full-scale infiltration tests, we investigated the performance of infiltrating pavements in practice. Most pavements function well above Dutch and international standards. However, variation was found to be high. Infiltration rates decrease over time. Age alone, however, is not a sufficient explanatory factor. Other factors, such as environmental or system characteristics, are of influence here. Maintenance can play a major role in preserving/improving the performance of infiltrating pavements in practice. While our results provide the first indication of the functioning of infiltrating pavement in practice, only with multi-year measurements following a strict monitoring protocol can the longer-term effects of environmental factors and maintenance actually be determined, providing the basis for the development of an optimal maintenance schedule and associated cost–benefit assessments to the added value of this type of climate adaptation.
DOCUMENT