from the publishers' website: "A 63-year-old woman with diabetes type II and a history of breast cancer was treated with clozapine for her refractory schizophrenia. She developed a dilated cardiomyopathy with an ejection fraction of 25%, a life-threatening event. The cause of heart failure could be multifactorial, with clozapine, family history, chemotherapy, diabetes type II and/or lithium as possible contributing risk factors. Clozapine was discontinued and the patient was referred to a hospice. Two weeks later, her heart failure slowly improved. Subsequently, she became extremely psychotic with a severe decline in quality of life. Therefore, it was decided to restart clozapine under cardiac monitoring. The patient’s psychotic symptoms improved and her heart failure status remained stable for more than a year. Thereafter, a small deterioration was seen in cardiac function. In this case, re-exposure to clozapine was successful for at least 2 years."
LINK
This review offers a detailed examination of the current landscape of radio frequency (RF) electromagnetic field (EMF) assessment tools, ranging from spectrum analyzers and broadband field meters to area monitors and custom-built devices. The discussion encompasses both standardized and non-standardized measurement protocols, shedding light on the various methods employed in this domain. Furthermore, the review highlights the prevalent use of mobile apps for characterizing 5G NR radio network data. A growing need for low-cost measurement devices is observed, commonly referred to as “sensors” or “sensor nodes”, that are capable of enduring diverse environmental conditions. These sensors play a crucial role in both microenvironmental surveys and individual exposures, enabling stationary, mobile, and personal exposure assessments based on body-worn sensors, across wider geographical areas. This review revealed a notable need for cost-effective and long-lasting sensors, whether for individual exposure assessments, mobile (vehicle-integrated) measurements, or incorporation into distributed sensor networks. However, there is a lack of comprehensive information on existing custom-developed RF-EMF measurement tools, especially in terms of measuring uncertainty. Additionally, there is a need for real-time, fast-sampling solutions to understand the highly irregular temporal variations EMF distribution in next-generation networks. Given the diversity of tools and methods, a comprehensive comparison is crucial to determine the necessary statistical tools for aggregating the available measurement data.
MULTIFILE
Light enables us to see and perceive our environment but it also initiates effects beyond vision, such as alertness. Literature describes that at least six factors are relevant for initiating effects beyond vision. The exact relationship between these factors and alertness is not yet fully understood. In the current field study, personal lighting conditions of 62 Dutch office workers (aged 49.7 ± 11.4 years) were continuously measured and simultaneously self-reported activities and locations during the day were gathered via diaries. Each office worker participated 10 working days in spring 2017. Personal lighting conditions were interpreted based on four of the six factors (light quantity, spectrum, timing, and duration of light exposure). Large individual differences were found for the daily luminous exposures, illuminances, correlated colour temperatures, and irradiances measured with the blue sensor area of the dosimeter. The average illuminance (over all participants and all days) over the course of the day peaked three times. The analysis of the duration of light exposure demonstrated that the participants were on average only exposed to an illuminance above 1000 lx for 72 minutes per day. The interpretation of personal lighting conditions based on the four factors provides essential information since all of these factors may be relevant for initiating effects beyond vision. The findings in the current paper give first in-depth insight in the possibilities to interpret personal lighting conditions of office workers.
MULTIFILE
Alcoholgebruiksstoornis (AUD) is een groot probleem. Alleen al in de USA zijn er 15 miljoen mensen met een AUD en meer dan 950.000 Nederlanders drinkt overmatig. Wereldwijd is 3-8% van het aantal sterfgevallen en 5% van alle ziektes en letsels toe te schrijven aan AUD. Zorg staat voor uitdagingen. Zo krijgt meer dan de helft van de AUD-patiënten binnen een jaar na behandeling een terugval. Een oplossing hiervoor is de inzet van Cue-Exposure-Therapy (CET). Daarbij worden cliënten blootgesteld aan triggers d.m.v. objecten, mensen en omgevingen die zucht opwekken. Om op een realistische, veilige en gepersonaliseerde manier deze triggers te ervaren, wordt Virtual Reality ingezet (VRET). Op die manier worden coping-vaardigheden getraind om verlangen naar alcohol tegen te gaan. De effectiviteit van VRET is (klinisch) bewezen. De komst van AR-technologieën roept echter de vraag op om mogelijkheden van Augmented-Reality-Exposure-Therapy (ARET) te onderzoeken. ARET geniet dezelfde voordelen als VRET (zoals een realistische veilige ervaring). Maar omdat AR virtuele-componenten in de echte omgeving integreert, waarbij het lichaam zichtbaar is, roept het vermoedelijk een ander type ervaring op. Dit kan de ecologische validiteit van CET in de behandeling vergroten. Daarnaast is ARET goedkoper te ontwikkelen (minder virtuele elementen) en hebben cliënten/klinieken gemakkelijker toegang tot AR (via smartphone/tablet). Bovendien worden nieuwe AR-brillen ontwikkeld, die nadelen zoals een te klein smartphone-scherm oplossen. Ondanks de vraag vanuit behandelaars, is ARET nog nooit ontwikkeld en onderzocht rondom verslaving. In dit project wordt het eerste ARET-prototype ontwikkeld rondom AUD in de behandeling van alcoholverslaving. Het prototype wordt ontwikkeld op basis van Volumetric-Captured-Digital-Humans en toegankelijk gemaakt voor AR-brillen, tablets en smartphones. Het prototype wordt gebaseerd op RECOVRY, een door het consortium ontwikkelde VRET rondom AUD. Een prototype-test onder (ex)AUD-cliënten zal inzicht geven in behoeften en verbeterpunten vanuit patiënt en zorgverlener en in het effect van ARET in vergelijk met VRET.
Alcohol use disorder (AUD) is a major problem. In the USA alone there are 15 million people with an AUD and more than 950,000 Dutch people drink excessively. Worldwide, 3-8% of all deaths and 5% of all illnesses and injuries are attributable to AUD. Care faces challenges. For example, more than half of AUD patients relapse within a year of treatment. A solution for this is the use of Cue-Exposure-Therapy (CET). Clients are exposed to triggers through objects, people and environments that arouse craving. Virtual Reality (VRET) is used to experience these triggers in a realistic, safe, and personalized way. In this way, coping skills are trained to counteract alcohol cravings. The effectiveness of VRET has been (clinically) proven. However, the advent of AR technologies raises the question of exploring possibilities of Augmented-Reality-Exposure-Therapy (ARET). ARET enjoys the same benefits as VRET (such as a realistic safe experience). But because AR integrates virtual components into the real environment, with the body visible, it presumably evokes a different type of experience. This may increase the ecological validity of CET in treatment. In addition, ARET is cheaper to develop (fewer virtual elements) and clients/clinics have easier access to AR (via smartphone/tablet). In addition, new AR glasses are being developed, which solve disadvantages such as a smartphone screen that is too small. Despite the demand from practitioners, ARET has never been developed and researched around addiction. In this project, the first ARET prototype is developed around AUD in the treatment of alcohol addiction. The prototype is being developed based on Volumetric-Captured-Digital-Humans and made accessible for AR glasses, tablets and smartphones. The prototype will be based on RECOVRY, a VRET around AUD developed by the consortium. A prototype test among (ex)AUD clients will provide insight into needs and points for improvement from patient and care provider and into the effect of ARET compared to VRET.
It is essential to look for new forms of care, with an emphasis on Prevention, Relocation and Replacement (Health & Care Knowledge and Innovation Agenda 2020-2030). Especially when it comes to Alcohol Use Disorder (AUD). Globally, more than 5% of all illness and injury are attributable to AUD. Treatment is challenging; 47-75% of AUD patients who are clinically detoxified relapse within one year. Recovry aims to prevent an unhealthy lifestyle due to (alcohol) addiction by developing and testing a Virtual Reality (VR) self-prevention tool (relocating and replacing care treatment). Although research shows that VR is used successfully in health care and in the treatment of alcohol addiction, especially through the creation of presence, it has not been tested for effectiveness and implementation (as an adjuvant in a clinical post-detoxification phase of an AUD- therapy). The question of whether virtual-humans should be used in a VR treatment and whether 3600 recorded VR or computer generated (CG) VR should be selected before. The use of a virtual human in VR has expected advantages (more effect) but also disadvantages (more costs). The expected advantages and disadvantages of 360o VR (cheaper, faster, more personal) and CG VR (more flexible and interactive) also cause choice and implementation problems. Recovry is the first project in which a VR tool is (further) developed in which an AUD treatment can (and will) be tested for the effect and effectiveness of adding virtual humans in CG and 360o VR environments as part of preventive care for patients with an AUD. This project thus serves as a prelude to cooperation in the Netherlands around a more effective implementation of VR in the (self) care system and thus the active and independent integration of former AUD patients in society (“more people, less patients”).